Selected Grantee Publications
- Clear All
- 30 results found
- nci
- nichd
- Neurological
Dysregulation of mTOR Signalling Is a Converging Mechanism in Lissencephaly
Zhang et al., Nature. 2025.
https://pubmed.ncbi.nlm.nih.gov/39743596
Lissencephaly (smooth brain) is a rare genetic condition, with such symptoms as epilepsy and intellectual disability and a median life expectancy of 10 years. This study reveals that reduced activity of the mTOR pathway may be a common cause of lissencephaly. Researchers used laboratory-grown brain models (organoids) and sequencing and spectrometry techniques to identify decreased mTOR activation in two types of lissencephaly disorders: p53-induced death domain protein 1 and Miller–Dieker lissencephaly syndrome. Pharmacological activation of mTOR signaling with a brain-selective mTORC1 activator molecule, NV-5138, prevented and reversed the morphological and functional defects in organoids. These findings suggest that mTOR dysregulation contributes to the development of lissencephaly spectrum disorders and highlight a potential druggable pathway for therapy. Supported by ORIP (S10OD018034, S10OD019967, S10OD030363), NCATS, NHGRI, NICHD, NIDA, NIGMS, NIMH, and NINDS.
Preclinical Use of a Clinically-Relevant scAAV9/SUMF1 Vector for the Treatment of Multiple Sulfatase Deficiency
Presa et al., Communications Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39870870
This study evaluates a gene therapy strategy using an adeno-associated virus (AAV)/SUMF1 vector to treat multiple sulfatase deficiency (MSD), a rare and fatal lysosomal storage disorder caused by mutations in the SUMF1 gene. Researchers delivered the functional gene to male and female Sumf1 knockout mice either neonatally or after symptom onset. Neonatal treatment via cerebral spinal fluid extended survival up to 1 year, alleviated MSD symptoms, and restored normal behavior and cardiac and visual function without toxicity. Treated tissues showed widespread SUMF1 expression and enzymatic activity. These findings support the translational potential of this gene replacement therapy for clinical use in MSD patients. Supported by ORIP (U42OD010921, U54OD020351, U54OD030187) and NCI.
Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy
Abreo et al., eLife. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11703504
This study investigates the cellular and molecular mechanisms underlying KCNQ2 encephalopathy, a severe type of early-onset epilepsy caused by mutations in the KCNQ2 gene. Researchers describe a case study of a child with a specific KCNQ2 gene mutation, G256W, and found that it disrupts normal brain activity, leading to seizures and developmental impairments. Male and female Kcnq2G256W/+ mice have reduced KCNQ2 protein levels, epilepsy, brain hyperactivity, and premature deaths. As seen in the patient study, ezogabine treatment rescued seizures in mice, suggesting a potential treatment avenue. These findings provide important insights into KCNQ2-related epilepsy and highlight possible therapeutic strategies. Supported by ORIP (U54OD020351, S10OD026804, U54OD030187), NCI, NHLBI, NICHD, NIGMS, NIMH, and NINDS.
Multimodal Analysis of Dysregulated Heme Metabolism, Hypoxic Signaling, and Stress Erythropoiesis in Down Syndrome
Donovan et al., Cell Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/39120971
Down syndrome (DS), a genetic condition caused by the presence of an extra copy of chromosome 21, is characterized by intellectual and developmental disability. Infants with DS often suffer from low oxygen saturation, and DS is associated with obstructive sleep apnea. Investigators assessed the role that hypoxia plays in driving health conditions that are comorbid with DS. A multiomic analysis showed that people with DS exhibit elevated heme metabolism and activated stress erythropoiesis, which are indicators of chronic hypoxia; these results were recapitulated in a mouse model for DS. This study identified hypoxia as a possible mechanism underlying several conditions that co-occur with DS, including congenital heart defects, seizure disorders, autoimmune disorders, several leukemias, and Alzheimer's disease. Supported by ORIP (R24OD035579), NCATS, NCI, and NIAID.
The Role of ATP Citrate Lyase in Myelin Formation and Maintenance
Schneider et al., Glia. 2024.
https://pubmed.ncbi.nlm.nih.gov/39318247/
Myelin formation by Schwann cells is critical for peripheral nervous system development and long-term neuronal function. The study examined how acetyl coenzyme A (acetyl-CoA), essential for lipid synthesis in myelin, is derived, with a focus on mitochondrial ATP citrate lysate (ACLY). By using both sexes in a Schwann cell–specific ACLY knockout mouse model, the authors reported that ACLY plays a role in acetyl-CoA supply for myelin maintenance but not myelin formation. ACLY is necessary for sustaining myelin gene expression and preventing nerve injury pathways. This work highlights a unique dependency on mitochondrial acetyl-CoA for Schwann cell integrity, providing insights into lipid metabolism in neuronal repair. Supported by ORIP (T35OD011078), NICHD, and NINDS.
Bone Marrow Transplantation Increases Sulfatase Activity in Somatic Tissues in a Multiple Sulfatase Deficiency Mouse Model
Presa et al., Communications Medicine. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11502872/pdf/43856_2024_Article_648.pdf
Multiple Sulfatase Deficiency (MSD) is a rare genetic disorder where patients demonstrate loss of function mutations in the SUMF1 gene, resulting in a severe reduction in sulfatase activity. This enzyme deficiency causes impaired lysosomal function and widespread inflammation, leading to clinical manifestations like neurodegeneration, vision and hearing loss, and cardiac disease. The researchers evaluated the therapeutic potential of hematopoietic stem cell transplant (HSCT) to initiate cross-correction, where functional sulfatase enzymes secreted from the healthy donor cells are taken up to restore function in enzyme-deficient host cells. Bone marrow from healthy male and female B6-Sumf1(+/+) mice were transplanted into B6-Sumf1(S153P/S153P) mice, a model for MSD. The results showed that HSCT is suitable to rescue sulfatase activity in peripheral organs, such as the liver, spleen, and heart, but is not beneficial alone in inhibiting the central nervous system pathology of MSD. Supported by ORIP (U54OD020351, U54OD030187, U42OD010921) and NCI.
RNA Landscapes of Brain and Brain-Derived Extracellular Vesicles in Simian Immunodeficiency Virus Infection and Central Nervous System Pathology
Huang et al., The Journal of Infectious Diseases. 2024.
https://pubmed.ncbi.nlm.nih.gov/38079216/
Brain tissue–derived extracellular vesicles (bdEVs) act locally in the central nervous system (CNS) and may indicate molecular mechanisms in HIV CNS pathology. Using brain homogenate (BH) and bdEVs from male pigtailed macaques, researchers identified dysregulated RNAs in acute and chronic infection. Most dysregulated messenger RNAs (mRNAs) in bdEVs reflected dysregulation in source BH, and these mRNAs are disproportionately involved in inflammation and immune responses. Additionally, several circular RNAs were differentially abundant in source tissue and might be responsible for specific differences in small RNA levels in bdEVs during simian immunodeficiency virus (SIV) infection. This RNA profiling shows potential regulatory networks in SIV infection and SIV-related CNS pathology. Supported by ORIP (U42OD013117), NCI, NIAID, NIDA, NIMH, and NINDS.
Cdk8/CDK19 Promotes Mitochondrial Fission Through Drp1 Phosphorylation and Can Phenotypically Suppress Pink1 Deficiency in Drosophila
Liao et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-47623-8
Pink1 is a mitochondrial kinase implicated in Parkinson’s disease and is conserved among humans, rodents, and flies. In this study, researchers found that Cdk8 in Drosophila (i.e., the orthologue of vertebrate CDK8 and CDK19) promotes the phosphorylation of Drp1 (i.e., a protein required for mitochondrial fission) at the same residue as Pink1. Cdk8 is expressed in both the cytoplasm and nucleus, and neuronal loss of Cdk8 reduces fly life span and causes bang sensitivity and elongated mitochondria in both muscles and neurons. Overexpression of Cdk8 suppresses elevated levels of reactive oxygen species, mitochondrial dysmorphology, and behavioral defects in flies with low levels of Pink1. These findings suggest that Cdk8 regulates Drp1-mediated mitochondrial fission in a similar manner as Pink1 and may contribute to the development of Parkinson’s disease. Supported by ORIP (R24OD022005, R24OD031447, P40OD018537, P40OD010949), NICHD, and NINDS.
De Novo Variants in FRYL Are Associated With Developmental Delay, Intellectual Disability, and Dysmorphic Features
Pan et al., The American Journal of Human Genetics. 2024.
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00039-9
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans, and its functions in mammals are largely unknown. Investigators report 13 individuals who have de novo heterozygous variants in FRYL and one individual with a heterozygous FRYL variant that is not confirmed to be de novo. The individuals present with developmental delay; intellectual disability; dysmorphic features; and other congenital anomalies in cardiovascular, skeletal, gastrointestinal, renal, and urogenital systems. Using fruit flies, investigators provide evidence that haploinsufficiency in FRYL likely underlies a disorder in humans with developmental and neurological symptoms. Supported by ORIP (U54OD030165), NHLBI, NICHD, and NCATS.
CDK4/6 Inhibition Sensitizes Intracranial Tumors to PD-1 Blockade in Preclinical Models of Brain Metastasis
Nayyer et al., Clinical Cancer Research. 2024.
Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. In this study, investigators evaluated the efficacy of combining CDKi (abemaciclib) and anti–PD-1 therapy (“combination therapy”) in mouse models for brain metastases, elucidated how combination therapy remodeled the tumor–immune microenvironment (TIME) and T-cell receptor (TCR) repertoires, and investigated the effects of CDKi on T-cell development and maintenance in NOD-scid Il2rgnull (NSG) mice engrafted with human immune systems (“humanized mice”). Results offer a strong rationale for the clinical evaluation of combination CDKi and PD-1 blockade in patients with brain metastases. Supported by ORIP (R24OD026440), NCI, and NIAID.