Selected Grantee Publications
Integrative Multi-omics Analysis Uncovers Tumor-Immune-Gut Axis Influencing Immunotherapy Outcomes in Ovarian Cancer
Rosario et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39638782
Recurrent ovarian cancer (OC) is the deadliest gynecological malignancy, with a 5-year survival rate of 50% and a median progression-free survival (PFS) of 1.9 to 2.1 months. A trial cohort of 40 patients was treated with a combination of the anti-PD-1 pembrolizumab, the anti–vascular endothelial growth factor bevacizumab, and cyclophosphamide. The investigators conducted a multi-omics analysis—including transcriptomic analysis, digital spatial profiling, 16s-rRNA sequencing, and metabolomics—to understand the underlying mechanisms for the enhanced PFS to a median of 10.2 months and overall response rate of 47.5%. Multi-omics analysis highlighted the formation of tertiary lymphoid structures known to improve responses to immunotherapy, differential microbial patterns, and alterations in the metabolites in three key metabolism pathways that enhanced immune response in patients to produce a durable clinical response. These findings highlight the importance of the tumor microenvironment and the gut microbiome, along with its metabolites, in elevating the efficacy of the cocktail therapy in recurrent OC patients, thereby enhancing their survival and quality of life. Supported by ORIP (S10OD024973) and NCI.
Indoleamine-2,3-Dioxygenase Inhibition Improves Immunity and Is Safe for Concurrent Use with cART During Mtb/SIV Coinfection
Singh et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39114981/
HIV and tuberculosis (TB) coinfection can lead to TB reactivation that is caused by chronic immune system activation. Researchers explored indoleamine-2,3-dioxygenase (IDO) inhibition as a host-directed therapy (HDT) to mitigate immune suppression and TB reactivation in a rhesus macaque Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) model. The IDO inhibitor D-1-methyl tryptophan improved T-cell immunity, reduced tissue damage, and controlled TB-related inflammation without interfering with the efficacy of combinatorial antiretroviral therapy (cART). These findings support IDO inhibition as a potential HDT in HIV/TB coinfection, providing a strategy to balance immune control while preventing TB reactivation in cART-treated patients. Supported by ORIP (S10OD028732, U42OD010442, S10OD028653) and NIAID.
Immune Restoration by TIGIT Blockade is Insufficient to Control Chronic SIV Infection
Webb et al., Journal of Virology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38775481/
T-cell exhaustion from prolonged upregulation of immune checkpoint receptors (ICR) contributes to immune dysfunction and viral persistence of both human and simian immunodeficiency virus (HIV/SIV) infection. Previous in vitro research has demonstrated the potential use of ICR blockade as a therapeutic. Researchers used a monoclonal antibody targeting humanized T cell immunoreceptor with Ig and ITIM domain (TIGIT) in male and female cynomolgus macaque and female rhesus macaque SIV models, 4–14 years of age. TIGIT blockade was well tolerated, with moderately increased proliferation of T cells and natural killer cells, but a reduction in plasma viral load was not observed. Future research to eliminate SIV should combine ICR blockades with other immunotherapies. Supported by ORIP (P51OD011092), NIAID, and NIMH.
Transiently Boosting Vγ9+Vδ2+ γδ T Cells Early in Mtb Coinfection of SIV-Infected Juvenile Macaques Does Not Improve Mtb Host Resistance
Larson et al., Infection and Immunity. 2024.
https://pubmed.ncbi.nlm.nih.gov/39475292/
Children with HIV have a higher risk of developing tuberculosis (TB), which is caused by the bacterium Mycobacterium tuberculosis (Mtb). This study utilized juvenile Mauritian cynomolgus macaques to investigate whether enhancing Vγ9+Vδ2+ γδ T cells with zoledronate treatment could improve TB resistance in HIV–TB coinfection. Researchers found that although boosting these immune cells temporarily increased their presence, it did not enhance the macaques’ ability to fight Mtb infection. These findings suggest that solely targeting γδ T cells may not be an effective strategy for improving TB immunity in immunocompromised individuals. These insights are crucial for developing better treatments for HIV–TB coinfections. Supported by ORIP (K01OD033539, P51OD011106) and NIAID.
The Buoyancy of Cryptococcal Cells and Its Implications for Transport and Persistence of Cryptococcus in Aqueous Environments
Jimenez et al., mSphere. 2024.
https://pubmed.ncbi.nlm.nih.gov/39601568/
Cryptococcosis is a major fungal pathogen that causes life-threatening infections. Researchers discovered that Cryptococcus has unique buoyancy properties that help with its survival and spread through water transport. This study explores how these fungal cells remain suspended in liquid, potentially enhancing their ability to survive in their surroundings and infect new hosts. Understanding the role of cellular buoyancy in Cryptococcus transport could improve strategies to prevent spread in aqueous settings, offering new insights into fungal infection risks. Supported by ORIP (T32OD011089), NIAID, and NHLBI.
Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells
Reinecke et al., Clinical Cancer Research. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11739783/
The leading cause of deaths in the pediatric osteosarcoma is due to lung metastasis. A current clinical need is the development of therapies that disrupt the later stages of metastasis. Researchers used 6- to 8-week-old female C57BL/6 and CB17-SCID mice to understand how tumor cells disrupt the lung microenvironment to promote tumor growth. Single-cell RNA sequencing and spatial transcriptomics demonstrated osteosarcoma–epithelial cell interactions in a chronic state of wound healing in the lung. Nintedanib administration significantly disrupted metastatic progression compared with the vehicle control, demonstrating a potential novel therapeutic for combating osteosarcoma lung metastasis. Supported by ORIP (K01OD031811), NCI, and NCATS.
SREBP-Dependent Regulation of Lipid Homeostasis Is Required for Progression and Growth of Pancreatic Ductal Adenocarcinoma
Ishida et al., Cancer Research Communications. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11444119
Lipids are crucial for tumor cell proliferation, and sterol regulatory element-binding protein (SREBP) activation drives lipid synthesis and uptake to maintain cancer growth. This study investigated the role of the SREBP pathway and its regulator, SREBP cleavage–activating protein (SCAP), in lipid metabolism during the development and progression of pancreatic ductal adenocarcinoma (PDAC). Using female mouse xenograft models and male and female pancreas-specific Scap knockout transgenic mice, researchers demonstrated that SCAP is essential for PDAC progression in low-nutrient conditions, linking lipid metabolism to tumor growth. These findings highlight SREBP as a key therapeutic target for PDAC, offering potential strategies for improving treatment by disrupting cancer-associated metabolic reprogramming. Supported by ORIP (T32OD011089), NCI, NHLBI, and NIGMS.
SIV-Specific Antibodies Protect Against Inflammasome-Driven Encephalitis in Untreated Macaques
Castell et al., Cell Reports. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11552693
Viral infections are the most common infectious cause of encephalitis, and simian immunodeficiency virus (SIV)–infected macaques are a well-established model for HIV. Researchers investigated the protective effects of SIV-specific antibodies against inflammation-driven encephalitis in using untreated, SIV-infected, male and female pigtail and rhesus macaques. Findings indicate that these antibodies reduce neuroinflammation and encephalitis, highlighting the importance of antibodies in controlling neuroimmune responses, especially in the absence of antiretroviral therapy. This study provides insight into immune-modulatory approaches to combating inflammation-driven encephalopathies. Supported by ORIP (U42OD013117, T32OD011089), NIDA, NHLBI, NIAID, NINDS, and NIMH.
Potent Broadly Neutralizing Antibodies Mediate Efficient Antibody-Dependent Phagocytosis of HIV-Infected Cells
Snow et al., PLOS Pathogens. 2024.
https://pubmed.ncbi.nlm.nih.gov/39466835
This study investigates the role of potent broadly neutralizing antibodies (bNAbs) in mediating antibody-dependent cellular phagocytosis (ADCP) of HIV-infected cells. Researchers developed a novel cell-based approach to assess the ADCP of HIV-infected cells expressing natural conformations of the viral envelope glycoprotein, which allows the virus to infect a host cell. The findings in this study demonstrate that bNAbs facilitate efficient ADCP, highlighting their potential in controlling HIV infection by promoting immune clearance of infected cells. This study provides valuable insights into antibody-mediated immune mechanisms and supports the development of antibody-based therapies and vaccines targeting HIV. Supported by ORIP (P51OD011106) and NIAID.
Phenotypic Characterization of Subtype A and Recombinant AC Transmitted/Founder Viruses From a Rwandan HIV-1 Heterosexual Transmission Cohort
Yue et al., Viruses. 2024.
https://pubmed.ncbi.nlm.nih.gov/39599821
HIV-1 is classified into several phylogenetic groups and subgroups, and to be effective, a vaccine would require broad activity across diverse viral strains. The most widespread group, M, is subdivided into several subgroups (A–D, F–H, J, K, and L). In a previous study, these researchers analyzed cohorts of people with recent or acute HIV infection in Rwanda. Subtype A was the dominant subtype, but a significant number of infections were caused by recombinants of subtypes A and C. This study assessed the characteristics of 16 infectious molecular clones (IMCs) of subtype A or AC recombinant viruses. Viral replication scores varied among the IMCs, and amino acid substitutions in the viral Gag gene were linked to higher replication activity. The sensitivity of different clones to broadly neutralizing antibodies also was assessed. This panel of well-characterized viral IMCs will support studies required to develop an effective HIV-1 vaccine. Supported by ORIP (P51OD011132) and NIAID.