Selected Grantee Publications
Functional Differences Between Rodent and Human PD-1 Linked to Evolutionary Divergence
Masubuchi et al., Science Immunology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39752535/
Programmed cell death protein 1 (PD-1), an immune checkpoint receptor, regulates immunity against cancer. Rodent models (e.g., mice) do not exhibit the same response rates and immune-related adverse effects to PD-1 blocking drugs as patients with cancer. Only 59.6% amino acid sequence identity is conserved in human PD-1 (hu PD-1) and mouse PD-1 (mo PD-1). Researchers used mouse tumor models, coculture assays, and biophysical assays to determine key functional and biochemical differences between hu PD-1 and mo PD-1. HuPD-1 demonstrates stronger suppressive activity of interleukin-2 secretion and CD69 expression than mo PD-1 because of the ectodomain and intracellular domain, but not the transmembrane domain. Analysis of rodent evolution demonstrated that other inhibitory immunoreceptors were positively selected or had selection intensification over PD-1. Understanding the conservation and divergence of PD-1 signaling at the molecular level in humans compared with mice is needed to properly translate preclinical data to clinical therapeutics. Supported by ORIP (S10OD026929), NCI, and NIA.
Immune Gene Regulation Is Associated With Age and Environmental Adversity in a Nonhuman Primate
Watowich et al., Molecular Ecology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39032090
The mammalian aging process involves a decline in physiological function, influenced by molecular mechanisms like epigenetic changes. These processes have been studied in controlled settings, however the role of aging in naturalistic populations remains unclear. This study explored the effects of environmental stressors (i.e., Hurricane Maria) on DNA methylation in free-living male and female rhesus macaques in Cayo Santiago, Puerto Rico. Results showed that environmental adversity accelerated age-related molecular changes, especially in gene transcription regions, while primary aging mainly affected nonregulatory regions. These findings highlight how the biology of aging is influenced by environmental factors. Supported by ORIP (P40OD012217), NIA, and NIMH.
Mechanical Force of Uterine Occupation Enables Large Vesicle Extrusion From Proteostressed Maternal Neurons
Wang et al., eLife. 2024.
https://pubmed.ncbi.nlm.nih.gov/39255003
This study investigates how mechanical forces from uterine occupation influence large vesicle extrusion (exopher production) from proteostressed maternal neurons in Caenorhabditis elegans. Exophers, previously found to remove damaged cellular components, are poorly understood. Researchers demonstrate that mechanical stress significantly increases exopher release from touch receptor neurons (i.e., ALMR) during peak reproductive periods, coinciding with egg production. Genetic disruptions reducing reproductive activity suppress exopher extrusion, whereas interventions promoting egg retention enhance it. These findings reveal that reproductive and mechanical factors modulate neuronal stress responses, providing insight on how systemic physiological changes affect neuronal health and proteostasis, with broader implications for reproductive-neuronal interactions. Supported by ORIP (R24OD010943, P40OD010440), NIA, and NIGMS.
Transcriptomic Analysis of Skeletal Muscle Regeneration Across Mouse Lifespan Identifies Altered Stem Cell States
Walter et al., Nature Aging. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578558
Age-related skeletal muscle regeneration dysfunction is poorly understood. Using single-cell transcriptomics and high-resolution spatial transcriptomics, researchers evaluated factors contributing to age-related decline in skeletal muscle regeneration after injury in young, old, and geriatric male and female mice (5, 20, and 26 months old). Eight immune cell types were identified and associated with age-related dynamics and distinct muscle stem cell states specific to old and geriatric tissue. The findings emphasize the role of extrinsic and intrinsic factors, including cellular senescence, in disrupting muscle repair. This study provides a spatial and molecular framework for understanding regenerative decline and cellular heterogeneity in aging skeletal muscle. Supported by ORIP (F30OD032097), NIA, NIAID, NIAMS, NICHD, and NIDA.
Impaired Skeletal Development by Disruption of Presenilin-1 in Pigs and Generation of Novel Pig Models for Alzheimer's Disease
Uh et al., Journal of Alzheimer's Disease. 2024.
https://pubmed.ncbi.nlm.nih.gov/39177593/
This study explored the effects of presenilin 1 (PSEN1) disruption on vertebral malformations in male and female PSEN1 mutant pigs. Researchers observed significant skeletal impairments and early deaths in pigs with a PSEN1 null mutation, mirroring phenotypes seen in mouse models of Alzheimer’s disease (AD). This porcine model provides valuable insights into pathological hallmarks of PSEN1 mutations in AD, offering a robust platform of therapeutic exploration. The findings establish pigs as an essential translational model for AD, enabling advanced studies on pathophysiology and treatment development for human skeletal and neurological conditions. Supported by ORIP (U42OD011140), NHLBI, NIA, NIAID.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Identification of Constrained Sequence Elements Across 239 Primate Genomes
Kuderna et al., Nature. 2024.
https://pubmed.ncbi.nlm.nih.gov/38030727/
Functional genomic elements that have acquired selective constraints specific to the primate order are prime candidates for understanding evolutionary changes in humans, but the selective constraints specific to the phylogenetic branch from which the human species ultimately emerged remain largely unidentified. Researchers constructed a genome-wide multiple sequence alignment of 239 primate species to better characterize constraint at noncoding regulatory sequences in the human genome. Their work reveals noncoding regulatory elements that are under selective constraint in primates but not in other placental mammals and are enriched for variants that affect human gene expression and complex traits in diseases. These findings highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals. Supported by ORIP (P40OD024628), NHGRI, NIA, and NICHD.
Effect of Hormone Replacement Therapy on Amyloid Beta (Aβ) Plaque Density in the Rhesus Macaque Amygdala
Appleman et al., Frontiers in Aging Neuroscience. 2024.
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1326747/full
Amyloid beta plaque density is associated with Alzheimer’s disease. In this study, the authors examined its concentration in aged female nonhuman primates’ cerebrospinal fluid, as well as in the amygdala, an area of the brain involved with emotion and memory. They set out to test the hypothesis that estrogen hormone replacement therapy can beneficially affect amygdala Aβ plaque density in “surgically menopausal” females (i.e., aged rhesus macaques that had undergone ovariectomy). Female rhesus macaques that received estrogen replacement therapy showed fewer amyloid plaques than those that did not receive the hormone. This effect was observed regardless of the type of diet that the animals consumed. These findings suggest that hormone replacement might be a helpful treatment to consider for Alzheimer’s disease. Supported by ORIP (P51OD011092, R24OD011895, S10OD025002) and NIA.
The Monarch Initiative in 2024: An Analytic Platform Integrating Phenotypes, Genes and Diseases Across Species
Putman et al., Nucleic Acids Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38000386/
The Monarch Initiative aims to bridge the gap between the genetic variations, environmental determinants, and phenotypic outcomes critical for translational research. The Monarch app provides researchers access to curated data sets with information on genes, phenotypes, and diseases across species and advanced analysis tools for such diverse applications as variant prioritization, deep phenotyping, and patient profile matching. Researchers describe upgrades to the app, including scalable cloud-based infrastructure, simplified data ingestion and knowledge graph integration systems, enhanced data mapping and integration standards, and a new user interface with novel search and graph navigation features. A customized plugin for OpenAI’s ChatGPT allows the use of large language models to interrogate knowledge in the Monarch graph and increase the reliability of the responses of Monarch’s analytic tools. These upgrades will enhance clinical diagnosis and the understanding of disease mechanisms. Supported by ORIP (R24OD011883), NLM, and NHGRI.
Deep Analysis of CD4 T Cells in the Rhesus CNS During SIV Infection
Elizaldi et al., PLOS Pathogens. 2023.
https://pubmed.ncbi.nlm.nih.gov/38060615/
Systemic HIV infection results in chronic inflammation that causes lasting damage to the central nervous system (CNS), despite long-term antiretroviral therapy (ART). Researchers studied neurocognitive outcomes in male and female rhesus macaques infected with simian immunodeficiency virus (SIV) using an ART regimen simulating suboptimal adherence; one group received no ART, and the other received ART with periodic interruptions. Using single-cell transcriptomic profiling, the researchers also identified molecular programs induced in the brain upon infection. They found that acute infection led to marked imbalance in the CNS CD4/CD8 T‑cell ratio, which persisted into the chronic phase. The studies provide insight into the role of CD4 T cells in the CNS during HIV infection. Supported by ORIP (P51OD011107, K01OD023034), NIA, NIAID, and NCI.