Selected Grantee Publications
Single-Cell Transcriptomics Predict Novel Potential Regulators of Acute Epithelial Restitution in the Ischemia-Injured Intestine
Rose et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39853303
Following ischemia in the small intestine, early barrier restoration relies on epithelial restitution to reseal the physical barrier and prevent sepsis. Pigs share a similar gastrointestinal anatomy, physiology, and microbiota with humans. Researchers used neonatal and juvenile, 2- to 6-week-old male and female Yorkshire cross pigs to determine upstream regulators of restitution. Single-cell sequencing of ischemia-injured epithelial cells demonstrated two sub-phenotypes of absorptive enterocytes, with one subset presenting a restitution phenotype. Colony-stimulating factor-1 (CSF1) was the only predicted upstream regulator expressed in juvenile jejunum compared with neonatal jejunum. An in vitro scratch wound assay using IPEC-J2 cells showed that BLZ945, a colony-stimulating factor 1 receptor antagonist, inhibited restitution. Ex vivo ischemia-injured neonatal pig jejunum treated with exogenous CSF1 displayed increased barrier function. This study could inform future research focused on developing novel therapeutics for intestinal barrier injury in patients. Supported by ORIP (T32OD011130, K01OD028207), NCATS, NICHD, and NIDDK.
Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells
Reinecke et al., Clinical Cancer Research. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11739783/
The leading cause of deaths in the pediatric osteosarcoma is due to lung metastasis. A current clinical need is the development of therapies that disrupt the later stages of metastasis. Researchers used 6- to 8-week-old female C57BL/6 and CB17-SCID mice to understand how tumor cells disrupt the lung microenvironment to promote tumor growth. Single-cell RNA sequencing and spatial transcriptomics demonstrated osteosarcoma–epithelial cell interactions in a chronic state of wound healing in the lung. Nintedanib administration significantly disrupted metastatic progression compared with the vehicle control, demonstrating a potential novel therapeutic for combating osteosarcoma lung metastasis. Supported by ORIP (K01OD031811), NCI, and NCATS.
Potent HPIV3-Neutralizing IGHV5-51 Antibodies Identified from Multiple Individuals Show L Chain and CDRH3 Promiscuity
Abu-Shmais et al., Journal of Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38488511/
Human parainfluenza virus 3 fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing antibodies that inhibit infection. More work is needed to understand these dynamics. Researchers characterized the genetic signatures, epitope specificity, neutralization potential, and publicness of HPIV3-specific antibodies identified across multiple individuals. From this work, they identified 12 potently neutralizing antibodies targeting three nonoverlapping epitopes on HPIV3 F. Six of the antibodies used immunoglobulin heavy variable gene, IGHV 5-51. These antibodies used different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. These findings help elucidate the genetic and functional characteristics of HPIV3-neutralizing antibodies and indicate the existence of a reproducible H chain variable–dependent antibody response associated with VL and CDRH3 promiscuity. Supported by ORIP (K01OD036063), NCATS, NCI, NEI, NIAID, and NIDDK.
Newly Identified Roles for PIEZO1 Mechanosensor in Controlling Normal Megakaryocyte Development and in Primary Myelofibrosis
Abbonante et al., American Journal of Hematology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38165047/
Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation are only partially understood. The authors report that PIEZO1, a mechanosensitive cation channel, is expressed in mouse and human Mks, and activation of PIEZO1 increased the number of immature Mks in mice. Piezo1/2 knockout mice show an increase in Mk size and platelet count, both at basal state and upon marrow regeneration. Together, these data suggest that PIEZO1 places a brake on Mk maturation and platelet formation in physiology, and its upregulation might contribute to aggravating disease. Supported by ORIP (K01OD025290), NHGRI, NHLBI, and NCATS.
Host-Derived Growth Factors Drive ERK Phosphorylation and MCL1 Expression to Promote Osteosarcoma Cell Survival During Metastatic Lung Colonization
McAloney et al., Cellular Oncology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37676378/
Mortality from osteosarcoma is closely linked to lung metastasis, even though the lung appears to be a hostile environment for tumor cells. Using female mice, researchers assessed changes in both host and tumor cells during colonization. Their findings suggest that the mitogen-activated protein kinase (MAPK) pathway is significantly elevated in early and established metastases, which correlates with expression of anti-apoptotic genes (e.g., MCL1). The authors conclude that niche-derived growth factors drive increased MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. This gene is a promising target for future therapeutic development. Supported by ORIP (K01OD031811), NCI, and NCATS.