Selected Grantee Publications
- Clear All
- 2 results found
- ncats
- COVID-19/Coronavirus
- Stem Cells/Regenerative Medicine
Lipid Nanoparticle-Mediated mRNA Delivery to CD34+ Cells in Rhesus Monkeys
Kim et al., Nature Biotechnology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578569
Blood cells, which are derived from hematopoietic stem cells (HSCs), promote pathologies including anemia, sickle cell disease, immunodeficiency, and metabolic disorders when dysfunctional. Because of the morbidity that results from the bone marrow mobilization and chemotherapy patient conditioning of current HSC therapies, novel treatment strategies that deliver RNA to HSCs are needed. Researchers found a lipid nanoparticle (LNP), LNP67, that delivers messenger RNA (mRNA) to murine HSCs in vivo and human HSCs ex vivo without the use of a cKit-targeting ligand. When tested in 7- to 8-month-old male and female rhesus monkeys, LNP67 successfully delivered mRNA to CD34+ cells and liver cells without adverse effects. These results show the potential translational relevance of an in vivo LNP–mRNA drug. Supported by ORIP (U42OD027094, P51OD011107), NIDDK, and NCATS.
Sequential Intrahost Evolution and Onward Transmission of SARS-CoV-2 Variants
Gonzalez-Reiche et al., Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239218/
Most patients with COVID-19 clear the virus upon resolution of acute infection, but a subset of immunocompromised individuals develop persistent SARS-CoV-2 infections. In this study, investigators describe sequential persistent SARS-CoV-2 infections in three individuals that led to the emergence, forward transmission, and continued evolution of the Omicron BA.1 variant Omicron BA.1.23. The study demonstrated that in the presence of suboptimal immune responses, persistent viral replication is an important driver of SARS-CoV-2 diversification. This and other studies also highlight that strategies to prevent virus persistence and shedding and more effective therapies are needed to limit the spread of newly emerging, neutralization-resistant variants in vulnerable patients. Supported by ORIP (S10OD026880, S10OD030463), NIAID, and NCATS.