Selected Grantee Publications
Autologous Transplant Therapy Alleviates Motor and Depressive Behaviors in Parkinsonian Monkeys
Tao et al., Nature Medicine. 2021.
https://www.nature.com/articles/s41591-021-01257-1
Generation of induced pluripotent stem cells (iPSCs) enables standardized of dopamine (DA) neurons for autologous transplantation therapy to improve motor functions in Parkinson disease (PD). Adult male rhesus PD monkeys receiving autologous, but not allogenic, transplantation exhibited recovery from motor and depressive signs of PD over a 2-year period without immunosuppressive therapy. Mathematical modeling showed correlations between surviving DA neurons with PET signal intensity and behavior recovery regardless of autologous or allogeneic transplant, suggesting a predictive power of PET and motor behaviors for surviving DA neuron number. The results demonstrate favorable efficacy of the autologous transplant approach to treat PD. Supported by ORIP (P51OD011106) NINDS, and NICHD.
Larval Zebrafish Use Olfactory Detection of Sodium and Chloride to Avoid Salt Water
Herrera et al., Current Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/33338431/
Zebrafish are freshwater fish unable to tolerate high-salt environments and would benefit from neural mechanisms that enable the navigation of salt gradients to avoid high salinity. Yet zebrafish lack epithelial sodium channels, the primary conduit land animals use to taste sodium. This suggests fish may possess novel, undescribed mechanisms for salt detection. In the present study, the authors show that zebrafish indeed respond to small temporal increases in salt by reorienting more frequently. In summary, this study establishes that zebrafish larvae can navigate and thus detect salinity gradients and that this is achieved through previously undescribed sensory mechanisms for salt detection. Supported by ORIP (R43OD024879, R44OD024879) and NINDS.
Myelin‐Specific T Cells in Animals With Japanese Macaque Encephalomyelitis
Govindan et al., Annals of Clinical and Translational Neurology. 2021.
https://onlinelibrary.wiley.com/doi/10.1002/acn3.51303
Investigators characterized the CD4+ and CD8+ T cells in demyelinating Japanese macaque encephalomyelitis (JME) lesions in age‐ and sex‐matched macaques and discovered differences in expression of myelin antigen sequences in the T cell. Mapping myelin epitopes revealed a heterogeneity in T cell responses among JME animals, which are associated with a proinflammatory pathogenic role in multiple sclerosis (MS). These findings draw further parallels between JME and MS and support the hypothesis that JME and possibly MS are triggered by mechanisms involving myelin damage and not myelin epitope mimicry. Supported by ORIP (P51OD011092) and NINDS.
Thresholds for Post-Rebound SHIV Control after CCR5 Gene-Edited Autologous Hematopoietic Cell Transplantation
Cardozo-Ojeda et al., eLife. 2021.
https://elifesciences.org/articles/57646
Investigators developed a mathematical model to project the minimum threshold of C-C chemokine receptor type 5 (CCR5) gene-edited cells necessary for a functional cure from HIV. This was based on blood T cell reconstitution and plasma simian-HIV (SHIV) dynamics from SHIV-1157ipd3N4-infected juvenile pig-tailed macaques that underwent autologous transplantation with CCR5 gene editing. The model predicts that viral control can be obtained following analytical treatment interruption (ATI) when: (1) transplanted hematopoietic stem and progenitor cells (HSPCs) are at least fivefold higher than residual endogenous HSPCs after total body irradiation and (2) the fraction of protected HSPCs in the transplant achieves a threshold (76–94%) sufficient to overcome transplantation-dependent loss of SHIV immunity. Under these conditions, if ATI is withheld until transplanted gene-modified cells engraft and reconstitute to a steady state, spontaneous viral control is projected to occur. Supported by ORIP (P51OD010425), NCATS and NIAID.
Lipocalin-2 Is an Anorexigenic Signal in Primates
Petropoulou et al., eLife. 2020.
https://doi.org/10.7554/eLife.58949
The hormone lipocalin-2 (LCN2) suppresses food intake in mice. Researchers demonstrated that LCN2 increases after a meal and reduces hunger in people with normal weight or overweight, but not in obese individuals. The researchers also showed that LCN2 crosses the blood-brain barrier and binds to the hypothalamus in vervet monkeys. LCN2 was found to bind to the hypothalamus in human, baboon, and rhesus macaque brain sections. When injected into vervets, LCN2 suppressed food intake and lowered body weight without toxic effects in short-term experiments. These findings lay the groundwork to investigate whether LCN2 might be a useful treatment for obesity. Supported by ORIP (P40OD010965), NCATS, NIDDK, NIA, and NHLBI.