Selected Grantee Publications
HDAC Inhibitor Titration of Transcription and Axolotl Tail Regeneration
Voss et al., Frontiers in Cell and Development Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/35036404/
New patterns of gene expression are enacted and regulated during tissue regeneration. Romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Single-nuclei RNA sequencing at 6 HPA illustrated that key genes were altered by romidepsin in the same direction across multiple cell types. These results implicate HDAC activity as a transcriptional mechanism that operates across cell types to regulate the alternative expression of genes that associate with regenerative success versus failure outcomes. Supported by ORIP (P40OD019794, R24OD010435, R24OD021479), NICHD, and NIGMS.
Comparative Cellular Analysis of Motor Cortex in Human, Marmoset and Mouse
Bakken et al., Nature. 2021.
https://pubmed.ncbi.nlm.nih.gov/34616062/
Investigators used high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmosets, and mice, to characterize the cellular makeup of the primary motor cortex (M1), which exhibits similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. Despite the overall conservation, many species-dependent specializations are apparent. These results demonstrate the robust molecular foundations of cell-type diversity in M1 across mammals and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations. Supported by ORIP (P51OD010425), NIMH, NCATS, NINDS, and NIDA.
Safety, Pharmacokinetics and Antiviral Activity of PGT121, a Broadly Neutralizing Monoclonal Antibody Against HIV-1: A Randomized, Placebo-Controlled, Phase 1 Clinical Trial
Stephenson et al., Nature Medicine. 2021.
https://doi.org/10.1038/s41591-021-01509-0
Researchers carried out a double-blind trial of one administration of the HIV-1 V3-glycan-specific antibody (Ab) PGT121 in HIV-uninfected and HIV-infected adults on antiretroviral therapy (ART), as well as an open-label trial of one infusion of PGT121 in viremic HIV-infected adults not on ART. The investigators observed no treatment-related serious adverse events among the 48 participants, and neutralizing anti-drug Abs were not elicited. PGT121 reduced plasma HIV RNA by a median of 1.77 log in viremic participants. Two individuals experienced ART-free viral suppression for ≥168 days following Ab infusion. These findings motivate further investigation of Ab-based therapeutic strategies for long-term HIV suppression. Supported by ORIP (R01OD024917, R01OD011095), NIAID, and NCATS.
Multiplexed Drug-Based Selection and Counterselection Genetic Manipulations in Drosophila
Matinyan et al., Cell Reports. 2021.
https://www.cell.com/cell-reports/pdf/S2211-1247(21)01147-5.pdf
Many highly efficient methods exist which enable transgenic flies to contribute to diagnostics and therapeutics for human diseases. In this study, researchers describe a drug-based genetic platform with four selection and two counterselection markers, increasing transgenic efficiency by more than 10-fold compared to established methods in flies. Researchers also developed a plasmid library to adapt this technology to other model organisms. This highly efficient transgenic approach significantly increases the power of not only Drosophila melanogaster but many other model organisms for biomedical research. Supported by ORIP (P40OD018537, P40OD010949, R21OD022981), NCI, NHGRI, NIGMS, and NIMH.
MIC-Drop: A Platform for Large-scale In Vivo CRISPR Screens
Parvez et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/34413171/
CRISPR screens in animals are challenging because generating, validating, and keeping track of large numbers of mutant animals is prohibitive. These authors introduce Multiplexed Intermixed CRISPR Droplets (MIC-Drop), a platform combining droplet microfluidics, single-needle en masse CRISPR ribonucleoprotein injections, and DNA barcoding to enable large-scale functional genetic screens in zebrafish. In one application, they showed that MIC-Drop could identify small-molecule targets. Furthermore, in a MIC-Drop screen of 188 poorly characterized genes, they discovered several genes important for cardiac development and function. With the potential to scale to thousands of genes, MIC-Drop enables genome-scale reverse genetic screens in model organisms. Supported by ORIP (R24OD017870), NIGMS, and NHLBI.
Advancing Human Disease Research with Fish Evolutionary Mutant Models
Beck et al., Trends in Genetics. 2021.
https://pubmed.ncbi.nlm.nih.gov/34334238/
Model organism research is essential to understand disease mechanisms. However, laboratory-induced genetic models can lack genetic variation and often fail to mimic disease severity. Evolutionary mutant models (EMMs) are species with evolved phenotypes that mimic human disease. They have improved our understanding of cancer, diabetes, and aging. Fish are the most diverse group of vertebrates, exhibiting a kaleidoscope of specialized phenotypes, many that would be pathogenic in humans but are adaptive in the species' specialized habitat. Evolved compensations can suggest avenues for novel disease therapies. This review summarizes current research using fish EMMs to advance our understanding of human disease. Supported by ORIP (R01OD011116), NIA, NIDA, and NIGMS.
Factor XII Plays a Pathogenic Role in Organ Failure and Death in Baboons Challenged with Staphylococcus aureus
Silasi et al., Blood. 2021.
https://pubmed.ncbi.nlm.nih.gov/33598692/
Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model for lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. The authors used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII. Inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms; untreated control animals suffered irreversible multiorgan failure. This study confirms their previous finding that at least two enzymes of FXIa and FXIIa play critical roles in the development of an acute and terminal inflammatory response. Supported by ORIP (P40OD024628), NIAID, NHLBI, and NIGMS.
In Vitro and In Vivo Functions of SARS-CoV-2 Infection-Enhancing and Neutralizing Antibodies
Li et al., Cell. 2021.
https://doi.org/10.1016/j.cell.2021.06.021
Antibody-dependent enhancement of infection is a concern for clinical use of antibodies. Researchers isolated neutralizing antibodies against the receptor-binding domain (RBD) or N-terminal domain (NTD) of SARS-CoV-2 spike from COVID-19 patients. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific binding modes. RBD and NTD antibodies mediated both neutralization and infection enhancement in vitro. However, infusion of these antibodies into mice or macaques resulted in suppression of virus replication, demonstrating that antibody-enhanced infection in vitro does not necessarily predict enhanced infection in vivo. RBD-neutralizing antibodies having cross-reactivity against coronaviruses were protective against SARS-CoV-2, the most potent of which was DH1047. Supported by ORIP (P40OD012217, U42OD021458, S10OD018164), NIAID, NCI, NIGMS, and NIH Common Fund.
Loss of Gap Junction Delta-2 (GJD2) Gene Orthologs Leads to Refractive Error in Zebrafish
Quint et al., Communications Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34083742/
Myopia is the most common developmental disorder of juvenile eyes. Although little is known about the functional role of GJD2 in refractive error development, the authors find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish cause changes in eye biometry and refractive status. Their immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin; its depletion leads to hyperopia and electrophysiological retina changes. They found a lenticular role; lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. The results provide functional evidence of a link between gjd2 and refractive error. Supported by ORIP (R24OD026591), NIGMS, and NINDS.
A Participant-Derived Xenograft Model of HIV Enables Long-Term Evaluation of Autologous Immunotherapies
McCann et al., Journal of Experimental Medicine. 2021.
https://doi.org/10.1084/jem.20201908
HIV-specific CD8+ T cells partially control viral replication but rarely provide lasting protection due to immune escape. Investigators showed that engrafting NSG mice with memory CD4+ T cells from HIV+ donors enables evaluation of autologous T cell responses while avoiding graft-versus-host disease. Treating HIV-infected mice with clinically relevant T cell products reduced viremia. In vivo activity was significantly enhanced when T cells were engineered with surface-conjugated nanogels carrying an Interleukin-15 superagonist but was ultimately limited by the pervasive selection of escape mutations, recapitulating human patterns. This “participant-derived xenograft” model provides a powerful tool for developing T cell-based therapies for HIV. Supported by ORIP (R01OD011095), NIAID, NIDA, NIMH, NINDS, and NCATS.