Selected Grantee Publications
Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells
Reinecke et al., Clinical Cancer Research. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11739783/
The leading cause of deaths in the pediatric osteosarcoma is due to lung metastasis. A current clinical need is the development of therapies that disrupt the later stages of metastasis. Researchers used 6- to 8-week-old female C57BL/6 and CB17-SCID mice to understand how tumor cells disrupt the lung microenvironment to promote tumor growth. Single-cell RNA sequencing and spatial transcriptomics demonstrated osteosarcoma–epithelial cell interactions in a chronic state of wound healing in the lung. Nintedanib administration significantly disrupted metastatic progression compared with the vehicle control, demonstrating a potential novel therapeutic for combating osteosarcoma lung metastasis. Supported by ORIP (K01OD031811), NCI, and NCATS.
SREBP-Dependent Regulation of Lipid Homeostasis Is Required for Progression and Growth of Pancreatic Ductal Adenocarcinoma
Ishida et al., Cancer Research Communications. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11444119
Lipids are crucial for tumor cell proliferation, and sterol regulatory element-binding protein (SREBP) activation drives lipid synthesis and uptake to maintain cancer growth. This study investigated the role of the SREBP pathway and its regulator, SREBP cleavage–activating protein (SCAP), in lipid metabolism during the development and progression of pancreatic ductal adenocarcinoma (PDAC). Using female mouse xenograft models and male and female pancreas-specific Scap knockout transgenic mice, researchers demonstrated that SCAP is essential for PDAC progression in low-nutrient conditions, linking lipid metabolism to tumor growth. These findings highlight SREBP as a key therapeutic target for PDAC, offering potential strategies for improving treatment by disrupting cancer-associated metabolic reprogramming. Supported by ORIP (T32OD011089), NCI, NHLBI, and NIGMS.
Multimodal Analysis of Dysregulated Heme Metabolism, Hypoxic Signaling, and Stress Erythropoiesis in Down Syndrome
Donovan et al., Cell Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/39120971
Down syndrome (DS), a genetic condition caused by the presence of an extra copy of chromosome 21, is characterized by intellectual and developmental disability. Infants with DS often suffer from low oxygen saturation, and DS is associated with obstructive sleep apnea. Investigators assessed the role that hypoxia plays in driving health conditions that are comorbid with DS. A multiomic analysis showed that people with DS exhibit elevated heme metabolism and activated stress erythropoiesis, which are indicators of chronic hypoxia; these results were recapitulated in a mouse model for DS. This study identified hypoxia as a possible mechanism underlying several conditions that co-occur with DS, including congenital heart defects, seizure disorders, autoimmune disorders, several leukemias, and Alzheimer's disease. Supported by ORIP (R24OD035579), NCATS, NCI, and NIAID.
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys
Liang et al., Human Gene Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38767512/
Genome editing in somatic cells and tissues has the potential to provide long-term expression of therapeutic proteins to treat a variety of genetic lung disorders. However, delivering genome-editing machinery to disease-relevant cell types in the lungs of primates has remained a challenge. Investigators of this article are participating in the NIH Somatic Cell Genome Editing Consortium. Herein, they demonstrate that intratracheal administration of a dual adeno-associated virus type 5 vector encoding CRISPR/Cas9 can mediate genome editing in rhesus (male and female) airways. Up to 8% editing was observed in lung lobes, including a housekeeping gene, GAPDH, and a disease-related gene, angiotensin-converting enzyme 2. Using single-nucleus RNA-sequencing, investigators systematically characterized cell types transduced by the vector. Supported by ORIP (P51OD01110, U42OD027094, S10OD028713), NCATS, NCI, and NHLBI.
Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity
Nam, Cancer Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38588407/
Tumor-initiating cells can survive in harsh environments via stress tolerance and metabolic flexibility; studies on this topic can yield new targets for cancer therapy. Using cultured cells and live human surgical biopsies of non-small cell lung cancer, researchers demonstrated that nutrient stress drives a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. This cascade results from upregulation of integrin αvβ3, a cancer stem cell marker. In mice, pharmacological or genetic targeting prevented lung cancer cells from evading the effects of nutrient stress, thus blocking tumor initiation. This work suggests that this molecular pathway leads to cancer stem cell reprogramming and could be linked to metabolic flexibility and tumor initiation. Supported by ORIP (K01OD030513), NCI, NIGMS, and NINDS.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Epigenetic MLH1 Silencing Concurs With Mismatch Repair Deficiency in Sporadic, Naturally Occurring Colorectal Cancer in Rhesus Macaques
Deycmar et al., Journal of Translational Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38504345
Rhesus macaques serve as a useful model for colorectal cancer (CRC) in humans, but more data are needed to understand the molecular pathogenesis of these cancers. Using male and female rhesus macaques, researchers investigated mismatch repair status, microsatellite instability, genetic mutations, transcriptional differences, and epigenetic alterations associated with CRC. Their data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. This work provides a uniquely informative model for human CRC. Supported by ORIP (P51OD011092, R24OD010947, R24OD021324, P40OD012217, U42OD010426, T35OD010946, T32OD010957), NCATS, and NCI.
Host-Derived Growth Factors Drive ERK Phosphorylation and MCL1 Expression to Promote Osteosarcoma Cell Survival During Metastatic Lung Colonization
McAloney et al., Cellular Oncology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37676378/
Mortality from osteosarcoma is closely linked to lung metastasis, even though the lung appears to be a hostile environment for tumor cells. Using female mice, researchers assessed changes in both host and tumor cells during colonization. Their findings suggest that the mitogen-activated protein kinase (MAPK) pathway is significantly elevated in early and established metastases, which correlates with expression of anti-apoptotic genes (e.g., MCL1). The authors conclude that niche-derived growth factors drive increased MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. This gene is a promising target for future therapeutic development. Supported by ORIP (K01OD031811), NCI, and NCATS.
p38MAPKα Stromal Reprogramming Sensitizes Metastatic Breast Cancer to Immunotherapy
Faget et al., Cancer Discovery. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238649/
This study emphasizes the importance of the metastatic tumor microenvironment in metastatic breast cancer growth and the identification of effective antimetastatic therapies. Using a stromal labeling approach and single-cell RNA sequencing, the authors showed that a combination of p38MAPK inhibition (p38i) and anti-OX40 synergistically reduced metastatic tumor growth and increased overall survival. Further engagement of cytotoxic T cells cured all metastatic disease in mice and produced durable immunologic memory. The Cancer Genome Atlas data analysis revealed that patients with p38i metastatic stromal signature and a high tumor mutational burden (TMB) had increased overall survival. These findings suggest that patients with high TMB would benefit the most from the p38i plus anti-OX40 approach. Supported by ORIP (S10OD028483), NIA, NCI, and NIGMS.