Selected Grantee Publications
- Clear All
- 5 results found
- ncats
- niddk
- Cardiovascular
AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys
Liang et al., Human Gene Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38767512/
Genome editing in somatic cells and tissues has the potential to provide long-term expression of therapeutic proteins to treat a variety of genetic lung disorders. However, delivering genome-editing machinery to disease-relevant cell types in the lungs of primates has remained a challenge. Investigators of this article are participating in the NIH Somatic Cell Genome Editing Consortium. Herein, they demonstrate that intratracheal administration of a dual adeno-associated virus type 5 vector encoding CRISPR/Cas9 can mediate genome editing in rhesus (male and female) airways. Up to 8% editing was observed in lung lobes, including a housekeeping gene, GAPDH, and a disease-related gene, angiotensin-converting enzyme 2. Using single-nucleus RNA-sequencing, investigators systematically characterized cell types transduced by the vector. Supported by ORIP (P51OD01110, U42OD027094, S10OD028713), NCATS, NCI, and NHLBI.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
De Novo Variants in FRYL Are Associated With Developmental Delay, Intellectual Disability, and Dysmorphic Features
Pan et al., The American Journal of Human Genetics. 2024.
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00039-9
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans, and its functions in mammals are largely unknown. Investigators report 13 individuals who have de novo heterozygous variants in FRYL and one individual with a heterozygous FRYL variant that is not confirmed to be de novo. The individuals present with developmental delay; intellectual disability; dysmorphic features; and other congenital anomalies in cardiovascular, skeletal, gastrointestinal, renal, and urogenital systems. Using fruit flies, investigators provide evidence that haploinsufficiency in FRYL likely underlies a disorder in humans with developmental and neurological symptoms. Supported by ORIP (U54OD030165), NHLBI, NICHD, and NCATS.
The Power of the Heterogeneous Stock Rat Founder Strains in Modeling Metabolic Disease
Wagner et al., Endocrinology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37882530/
Metabolic diseases are a host of complex conditions, including obesity, diabetes mellitus, and metabolic syndrome. Endocrine control systems (e.g., adrenals, thyroid, gonads) are causally linked to metabolic health outcomes. In this study, investigators determined novel metabolic and endocrine health characteristics in both sexes of six available substrains similar to the N/NIH Heterogeneous Stock (HS) rat founders. This deep-phenotyping protocol provides new insight into the exceptional potential of the HS rat population to model complex metabolic health states. The following hypothesis was tested: The genetic diversity in the HS rat founder strains represents a range of endocrine health conditions contributing to the diversity of cardiometabolic disease risks exhibited in the HS rat population. Supported by ORIP (R24OD024617), NHLBI, NIGMS and NIDDK.
Recreating the Heart’s Helical Structure–Function Relationship With Focused Rotary Jet Spinning
Chang et al., Science. 2022.
https://www.doi.org/10.1126/science.abl6395
The investigators developed a tissue engineering approach that enables rapid deposition of cardiomyocyte microfibers with programmable alignments in 3D geometries. Using this focused rotary jet spinning (FRJS) method, they reproduced tissue scaffolds with contractile cells' helical alignments, resembling complex structures of the musculature and properties of a natural heart. This work represents an important advance towards biofabrication of tissue models for healthy and diseased hearts by manipulating orientation of specific fibers. With the technological advancement over other competing methods, FRJS might provide a pathway towards fabricating other tissues and organs with diverse cell populations. Supported by ORIP (S10OD023519) and NCATS.