Selected Grantee Publications
Gigapixel Imaging With a Novel Multi-Camera Array Microscope
Thomson et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.74988
The dynamics of living organisms are organized across many spatial scales. The investigators created assembled a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution, large field-of-view recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, they computationally generated gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This system allows the team to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales (e.g., larval zebrafish, fruit flies, slime mold). Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms. Supported by ORIP (R44OD024879), NIEHS, NCI, and NIBIB.
Long-Term Evolutionary Adaptation of SIVcpz toward HIV-1 Using a Humanized Mouse Model
Schmitt et al., Journal of Medical Primatology. 2022.
https://www.doi.org/10.1111/jmp.12616
Chimpanzee-derived simian immunodeficiency viruses (SIVcpz) are thought to have evolved into the highly pathogenic HIV-1 Group M, but the genetic adaptations required for SIV progenitor viruses to become pathogenic and established as HIVs in the human population have remained unclear. Using humanized mice of both sexes, researchers mimicked the evolution of SIVcpz into HIV-1 Group M through serial passaging. After four generations, the researchers observed increased initial viral load, increased CD4+ T cell decline, and nonsynonymous substitutions. Overall, these data indicate increased viral fitness and pathogenicity. This work also demonstrates the utility of humanized mice in recreating the adaptive pressures necessary for the evolution of SIVcpz into HIV-1. Supported by ORIP (P51OD011104, P51OD011106), NCATS, and NIAID.
Profiling Development of Abdominal Organs in the Pig
Gabriel et al., Scientific Reports. 2022.
https://www.doi.org/10.1038/s41598-022-19960-5
The pig is a model system for studying human development and disease due to its similarities to human anatomy, physiology, size, and genome. Moreover, advances in CRISPR gene editing have made genetically engineered pigs a viable model for the study of human pathologies and congenital anomalies. However, a detailed atlas illustrating pig development is necessary for identifying and modeling developmental defects. Here, the authors describe normal development of the pig abdominal system (i.e., kidney, liver, pancreas, spleen, adrenal glands, bowel, gonads) and compare them with congenital defects that can arise in gene-edited SAP130 mutant pigs. This atlas and the methods described here can be used as tools for identifying developmental pathologies of the abdominal organs in the pig at different stages of development. Supported by ORIP (U42OD011140), NHLBI, NIAID, NIBIB, NICHD, and NINDS.
Recreating the Heart’s Helical Structure–Function Relationship With Focused Rotary Jet Spinning
Chang et al., Science. 2022.
https://www.doi.org/10.1126/science.abl6395
The investigators developed a tissue engineering approach that enables rapid deposition of cardiomyocyte microfibers with programmable alignments in 3D geometries. Using this focused rotary jet spinning (FRJS) method, they reproduced tissue scaffolds with contractile cells' helical alignments, resembling complex structures of the musculature and properties of a natural heart. This work represents an important advance towards biofabrication of tissue models for healthy and diseased hearts by manipulating orientation of specific fibers. With the technological advancement over other competing methods, FRJS might provide a pathway towards fabricating other tissues and organs with diverse cell populations. Supported by ORIP (S10OD023519) and NCATS.
Innate Immune Regulation in HIV Latency Models
Olson et al., Retrovirology. 2022.
https://www.doi.org/10.1186/s12977-022-00599-z
Researchers are interested in developing therapeutic approaches to target latent HIV reservoirs, which are unaffected by antiretroviral therapy. Previous studies suggest that HIV latency might be related to viral RNA sensing, interferon (IFN) signaling, and IFN-stimulated gene (ISG) activation. In this study, the researchers evaluated responses to stimulation by retinoic acid–inducible gene I agonists and IFN in multiple CD4+ T cell line models for HIV latency. The models represented various aspects of latent infection and viral control. Several of the cell lines demonstrated reduced ISG induction, suggesting that long-term latency might be related to dysregulation of the downstream IFN response. These effects likely reflect transcriptional changes occurring within a core set of ISGs and altering IFN responses. Additional studies could provide insight into the functions of these ISGs in HIV latency. Supported by ORIP (P51OD010425), NCATS, and NIAID.
Safety and Antiviral Activity of Triple Combination Broadly Neutralizing Monoclonal Antibody Therapy Against HIV-1: A Phase 1 Clinical Trial
Julg et al., Nature Medicine. 2022.
https://www.doi.org/10.1038/s41591-022-01815-1
Previous evidence suggests that at least three broadly neutralizing antibodies (bNAbs) targeting different epitope regions are needed for robust treatment and control of HIV. The investigators evaluated the safety, tolerability, and pharmacokinetics of PGDM1400, an HIV-1 V2-glycan–specific antibody, in a first-in-human trial. The primary endpoints were safety, tolerability, pharmacokinetics, and antiviral activity. The trial met the prespecified endpoints in male and female adults. These data will help advance understanding of the capabilities, limitations, and future role of bNAb combinations in HIV prevention and care. Supported by ORIP (R01OD024917), NIAID, and NCATS.
The Early Life Microbiota Mediates Maternal Effects on Offspring Growth in a Nonhuman Primate
Petrullo et al., iScience. 2022.
https://www.doi.org/10.1016/j.isci.2022.103948
Mammalian mothers influence offspring development by providing nutrients and other bioactive compounds through the placenta or milk. A relatively unexplored mechanism for maternal effects is vertical transmission of bacteria through milk to the infant gut. Infants that receive more glycan-utilizing bacteria from milk might better exploit oligosaccharides, which could improve nutrition and accelerate growth. Researchers found that first-time vervet mothers harbored a milk bacterial community that was less diverse due to the dominance of Bacteroides fragilis, a glycan-utilizing bacteria. These low-parity females had infants that grew faster, suggesting that vertical transmission of bacteria via milk can mediate maternal effects on growth. These results indicate non-nutritive milk constituents play important roles in development. Commercial milk formula might need to be improved or supplemented to better support infant health. Supported by ORIP (P40OD010965) and NCATS.