Selected Grantee Publications
Stable HIV Decoy Receptor Expression After In Vivo HSC Transduction in Mice and NHPs: Safety and Efficacy in Protection From SHIV
Li, Molecular Therapy. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124088/
Autologous hematopoietic stem cell (HSC) gene therapy offers a promising HIV treatment strategy, but cost, complexity, and toxicity remain significant challenges. Using female mice and female nonhuman primates (NHPs) (i.e., rhesus macaques), researchers developed an approach based on the stable expression of eCD4-Ig, a secreted decoy protein for HIV and simian–human immunodeficiency virus (SHIV) receptors. Their goals were to (1) assess the kinetics and serum level of eCD4-Ig, (2) evaluate the safety of HSC transduction with helper-dependent adenovirus–eCD4-Ig, and (3) test whether eCD4-Ig expression has a protective effect against viral challenge. They found that stable expression of the decoy receptor was achieved at therapeutically relevant levels. These data will guide future in vivo studies. Supported by ORIP (P51OD010425) and NHLBI.
Exosome Cell Origin Affects In Vitro Markers of Tendon Repair in Ovine Macrophages and Tenocytes
von Stade et al., Tissue Engineering Part A. 2023.
https://pubmed.ncbi.nlm.nih.gov/36792933/
The underlying pathogenesis of rotator cuff tendinopathy reflects a combination of intrinsic and extrinsic factors, and recent work suggests that cell-to-cell communication drives the severity of tendon changes. Researchers are interested in the role of extracellular vesicles in tendon mechanical resilience, tissue organization, and anti-inflammatory macrophage phenotype predominance in response to tendon injury. In this study, investigators demonstrated how exosomes differ functionally based on cell source. This work suggests that control of exosome composition could lead to more effective therapies for certain tissues. Supported by ORIP (K01OD022982) and NCATS.
The Power of the Heterogeneous Stock Rat Founder Strains in Modeling Metabolic Disease
Wagner et al., Endocrinology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37882530/
Metabolic diseases are a host of complex conditions, including obesity, diabetes mellitus, and metabolic syndrome. Endocrine control systems (e.g., adrenals, thyroid, gonads) are causally linked to metabolic health outcomes. In this study, investigators determined novel metabolic and endocrine health characteristics in both sexes of six available substrains similar to the N/NIH Heterogeneous Stock (HS) rat founders. This deep-phenotyping protocol provides new insight into the exceptional potential of the HS rat population to model complex metabolic health states. The following hypothesis was tested: The genetic diversity in the HS rat founder strains represents a range of endocrine health conditions contributing to the diversity of cardiometabolic disease risks exhibited in the HS rat population. Supported by ORIP (R24OD024617), NHLBI, NIGMS and NIDDK.
HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing
Lyons et al., c. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674359/
Current HIV treatment strategies are focused on forced proviral reactivation and elimination of reactivated cells with immunological or toxin-based technologies. Researchers have proposed the use of a novel “block-lock-stop” approach, which entails the long-term durable silencing of viral expression and permanent transcriptional deactivation of the latent provirus. In the present study, the authors present this approach and its rationale. More research is needed to understand the (1) epigenetic architecture of integrated provirus, (2) cell types and epigenetic cell states that favor viral rebound, (3) molecular functions of Tat (a protein that controls transcription of HIV) and host factors that prevent permanent silencing, (4) human endogenous retrovirus silencing in the genome, and (5) approaches to generate defective proviruses. Additionally, community engagement is crucial for this effort. Supported by ORIP (K01OD031900), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS.
Allelic Strengths of Encephalopathy-Associated UBA5 Variants Correlate Between In Vivo and In Vitro Assays
Pan et al., eLife. 2023.
https://pubmed.ncbi.nlm.nih.gov/37502976/
The UBA5 gene is associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder, in humans. The link between UBA5 variants and severity of DEE44, however, is not established. Investigators developed humanized fly models carrying a series of patient UBA5 variants. These flies showed differences in survival rates, developmental progress, life span, and neurological well-being. The severity of these defects correlated strongly with functional defects of UBA5 variants, allowing the classification of UBA5 loss-of-function variants into mild, intermediate, and severe allelic strengths in patients. This study provides resources for systematic investigation of the mechanistic link between UBA5 variants and DEE44 and for developing diagnostic approaches. Supported by ORIP (R24OD022005, R24OD031447, U54OD035865) and NCATS.
CD8+ T Cells Control SIV Infection Using Both Cytolytic Effects and Non-Cytolytic Suppression of Virus Production
Policicchio et al., Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589330/
HIV continuously evades and subdues the host immune responses through multiple strategies, and an understanding of these strategies can help inform research efforts. Using a mathematical model, investigators assessed whether CD8+ cells from male rhesus macaques exert a cytolytic response against infected cells prior to viral production. Their goal was to elucidate the possible mode of action of CD8+ cells on simian immunodeficiency virus (SIV)–infected cells. Models that included non‑cytolytic reduction of viral production best explained the viral profiles across all macaques, but some of the best models also included cytolytic mechanisms. These results suggest that viral control is best explained by the combination of cytolytic and non-cytolytic effects. Supported by ORIP (P40OD028116, R01OD011095), NIAID, NIDDK, and NHLBI.
Timing of Initiation of Anti-Retroviral Therapy Predicts Post-Treatment Control of SIV Replication
Pinkevych et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558076/
Researchers are interested in approaches to reducing viral rebound following interruption of antiretroviral therapy, but more work is needed to understand major factors that determine the viral “setpoint” level. Researchers previously assessed how timing of treatment can affect the frequency of rebound from latency. In the current study, the authors analyzed data from multiple studies of simian immunodeficiency virus (SIV) infection in rhesus macaques to further explore the dynamics and predictors of post-treatment viral control. They determined that the timing of treatment initiation was a major predictor of both the level and the duration of post-rebound SIV control. These findings could help inform future treatments. Supported by ORIP (U42OD011023, P51OD011132, P51OD011092), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS
AZD5582 Plus SIV-Specific Antibodies Reduce Lymph Node Viral Reservoirs in Antiretroviral Therapy–Suppressed Macaques
Dashti et al., Nature Medicine. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579098/
Researchers are interested in targeting the HIV reservoir via a latency reversal and clearance approach. Previously, investigators demonstrated that AZD5582 induces systemic latency reversal in rhesus macaques and humanized mice, but a consistent reduction in the viral reservoir was not observed. In the current study, they combined AZD5582 with four simian immunodeficiency virus (SIV)–specific rhesus monoclonal antibodies using rhesus macaques of both sexes. They reported a reduction in total and replication-competent SIV DNA in lymph node–derived CD4+ T cells in the treated macaques. These findings provide proof of concept for the potential of the latency reversal and clearance HIV cure strategy. Supported by ORIP (P51OD011132, R01OD011095), NIAID, NCI, and NHLBI.
Zebrafish as a High Throughput Model for Organ Preservation and Transplantation Research
Da Silveira Cavalcante et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300076R
Organ transplantation increases the quality of life and life expectancy of patients with chronic end-stage diseases, but the preservation of organs for transplantation remains a significant barrier. In the current study, researchers demonstrate the value of zebrafish as a high-throughput model organism in the fields of solid-organ preservation and transplantation, with a focus on heart preservation via partial freezing. Their techniques have the potential to advance research in the fields of cryobiology and solid-organ transplantation. Supported by ORIP (R24OD031955) and NHLBI.
Host-Derived Growth Factors Drive ERK Phosphorylation and MCL1 Expression to Promote Osteosarcoma Cell Survival During Metastatic Lung Colonization
McAloney et al., Cellular Oncology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37676378/
Mortality from osteosarcoma is closely linked to lung metastasis, even though the lung appears to be a hostile environment for tumor cells. Using female mice, researchers assessed changes in both host and tumor cells during colonization. Their findings suggest that the mitogen-activated protein kinase (MAPK) pathway is significantly elevated in early and established metastases, which correlates with expression of anti-apoptotic genes (e.g., MCL1). The authors conclude that niche-derived growth factors drive increased MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. This gene is a promising target for future therapeutic development. Supported by ORIP (K01OD031811), NCI, and NCATS.