Selected Grantee Publications
- Clear All
- 5 results found
- New Approach Methodologies
- 2024
- 2023
Enterohemorrhagic Escherichia coli (EHEC) Disrupts Intestinal Barrier Integrity in Translational Canine Stem Cell-Derived Monolayers
Nagao et al., Microbiology Spectrum. 2024.
https://pubmed.ncbi.nlm.nih.gov/39162490/
EHEC produces Shiga toxin, which causes acute colitis with symptoms such as hemolytic uremic syndrome and bloody diarrhea. The researchers developed a colonoid-derived monolayer model to understand EHEC’s impact on canine gut health. Colonoid-derived monolayers co-cultured with EHEC demonstrated key differences compared with the control and nonpathogenic E. coli co-cultures. Scanning electron microscopy displayed EHEC aggregated and attached to the microvilli. EHEC-infected monolayers demonstrated significantly weakened membrane integrity and increased inflammatory cytokine production, specifically TNFα. The researchers developed a novel in vitro model that offers an additional platform for understanding the mechanisms of EHEC pathogenicity, developing therapeutics for EHEC, and studying additional enteric pathogens. Supported by ORIP (K01OD030515, R21OD031903).
Controlled Stiffness of Direct-Write, Near-Field Electrospun Gelatin Fibers Generates Differences in Tenocyte Morphology and Gene Expression
Davis, Journal of Biomechanical Engineering. 2024.
https://pubmed.ncbi.nlm.nih.gov/38529730/
Tendinopathy is associated with mobility issues, and the cell–matrix interactions involved in the development of tendinopathy are not fully understood. In this study, researchers fabricated micron-scale fibrous scaffolds that mimic native collagen fiber size and orientation. They reported that matrix metalloproteinase and proteoglycans (possible indicators of tendinopathy) were more upregulated in the presence of high-stiffness fibers than low-stiffness fibers. The authors’ findings suggest that scaffolds can serve as in vitro models for tendinopathy. Additionally, their work suggests that matrix mechanical properties contribute to cell–matrix interactions during tendinopathy formation. Supported by ORIP (T32OD011130) and NIA.
Macrophages Derived From Human Induced Pluripotent Stem Cells (iPSCs) Serve As a High-Fidelity Cellular Model for Investigating HIV-1, Dengue, and Influenza viruses
Yang et al., Journal of Virology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38323811/
Macrophages can be weaponized by viruses to host viral reproduction and support long-term persistence. The most common way of studying these cells is by isolating their precursors from donor blood and differentiating the isolated cells into macrophages. This method is costly and technically challenging, and it produces varying results. In this study, researchers confirmed that macrophages derived from iPSC cell lines—a model that is inexpensive, consistent, and modifiable by genome editing—are a suitable model for experiments involving HIV and other viruses. Macrophages derived from iPSCs are as susceptible to infection as macrophages derived from blood, with similar infection kinetics and phenotypes. This new model offers researchers an unlimited source of cells for studying viral biology. Supported by ORIP (R01OD034046, S10OD021601), NIAID, NIDA, NIGMS, and NHLBI.
Ion Channel Function in Translational Bovine Gallbladder Cholangiocyte Organoids: Establishment and Characterization of a Novel Model System
Nagao and Ambrosini et al., Frontiers in Veterinary Science. 2023.
https://pubmed.ncbi.nlm.nih.gov/37303723/
The study of biliary physiology and pathophysiology has long been hindered by the lack of in vitro models that accurately reflect the complex functions of the biliary system. Recent advancements in 3D organoid technology may offer a promising solution to this issue. Bovine gallbladder models have recently gained attention in the investigation of human diseases due to their remarkable similarities in physiology and pathophysiology to the human gallbladder. In this study, the investigators successfully established and characterized bovine gallbladder cholangiocyte organoids (GCOs) that retain key characteristics of the gallbladder in vivo, including stem cell properties and proliferative capacity. Notably, their findings demonstrate that these organoids exhibit specific and functional cystic fibrosis transmembrane conductance regulator activity. These bovine GCOs represent a valuable tool for studying the physiology and pathophysiology of the gallbladder with human significance. Supported by ORIP (K01OD030515, R21OD031903).
CD8+ T Cells Promote HIV Latency by Remodeling CD4+ T Cell Metabolism to Enhance Their Survival, Quiescence, and Stemness
Mutascio et al., Immunity. 2023.
https://www.doi.org/10.1016/j.immuni.2023.03.010
An HIV reservoir persists following antiretroviral therapy, representing the main barrier to an HIV cure. Using a validated in vitro model, investigators explored the mechanism by which CD8+ T cells promote HIV latency and inhibit latency reversal in HIV-infected CD4+ T cells. They reported that CD8+ T cells favor the establishment of HIV latency by modulating metabolic, stemness, and survival pathways that correlate with the downregulation of HIV expression and promote HIV latency. In future studies, comparative analyses may provide insight into common molecular mechanisms in the silencing of HIV expression by CD8+ T cells and macrophages, which can be applied to new intervention strategies that target the HIV reservoir. Supported by ORIP (P51OD011132, S10OD026799), NIAID, NIDDK, NIDA, NHLBI, and NINDS.