Selected Grantee Publications
- Clear All
- 3 results found
- New Approach Methodologies
- 2025
- 2022
De Novo and Inherited Variants in DDX39B Cause a Novel Neurodevelopmental Syndrome
Booth et al., Brain. 2025.
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awaf035/8004980?login=true
DDX39B is a core component of the TRanscription-EXport (TREX) super protein complex. Recent studies have highlighted the important role of TREX subunits in neurodevelopmental disorders. Researchers describe a cohort of six individuals (male and female) from five families with disease-causing de novo missense variants or inherited splice-altering variants in DDX39B. Three individuals in the cohort are affected by mild to severe developmental delay, hypotonia, history of epilepsy or seizure, short stature, skeletal abnormalities, variable dysmorphic features, and microcephaly. Using a combination of patient genomic and transcriptomic data, in silico modeling, in vitro assays, and in vivo Drosophila and zebrafish models, this study implicates disruption of DDX39B in a novel neurodevelopmental disorder called TREX-complex-related neurodevelopmental syndrome. Supported by ORIP (U54OD030165).
Matrikine Stimulation of Equine Synovial Fibroblasts and Chondrocytes Results in an In Vitro Osteoarthritis Phenotype
Gagliardi et al., Journal of Orthopaedic Research. 2025.
https://pubmed.ncbi.nlm.nih.gov/39486895
Advancements in therapy development for osteoarthritis (OA) currently are limited due to a lack of physiologically relevant in vitro models. This study aimed to understand the effect of matrikine stimulation, using human recombinant fibronectin fragment containing domains 7–10 (FN7–10), on equine synovial fibroblasts and chondrocytes. Inflammatory cytokines, chemokines, and matrix degradation genes in equine synovial fibroblasts and chondrocytes were significantly altered in response to FN7–10 stimulation; marked upregulation was observed in interleukin-6 (IL-6), IL-4, IL-10, matrix metalloproteinase 1 (MMP1), MMP3, MMP13, CCL2/MCP1, and CXCL6/GCP-2 gene expression. Only IL-6 protein production was significantly increased in media isolated from cells stimulated with FN7–10. These results support the potential use of equine synovial fibroblasts and chondrocytes—employing FN7–10—as representative in vitro models to study OA. Supported by ORIP (T32OD011130) and NIAMS.
Cannabinoid Receptor 1 Antagonist Genistein Attenuates Marijuana-Induced Vascular Inflammation
Wei et al., Cell. 2022.
https://www.doi.org/10.1016/j.cell.2022.04.005
Marijuana use is increasing and is associated with increased risk of cardiovascular disease (CVD); however, the link between marijuana and CVD remains largely unknown. Investigators demonstrated that a psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9‑THC), activates cannabinoid receptor 1 (CB1), causing vascular inflammation, oxidative stress, endothelial dysfunction, and atherosclerosis. This in silico virtual screening study suggested that genistein, a soybean isoflavone, would be a putative CB1 antagonist. Their validation study showed that in male mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. This study for the first time revealed that genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis while preserving clinically useful effects. Supported by ORIP (S10OD030452) and others.