Selected Grantee Publications
- Clear All
- 2 results found
- New Approach Methodologies
- Microscopy
De Novo and Inherited Variants in DDX39B Cause a Novel Neurodevelopmental Syndrome
Booth et al., Brain. 2025.
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awaf035/8004980?login=true
DDX39B is a core component of the TRanscription-EXport (TREX) super protein complex. Recent studies have highlighted the important role of TREX subunits in neurodevelopmental disorders. Researchers describe a cohort of six individuals (male and female) from five families with disease-causing de novo missense variants or inherited splice-altering variants in DDX39B. Three individuals in the cohort are affected by mild to severe developmental delay, hypotonia, history of epilepsy or seizure, short stature, skeletal abnormalities, variable dysmorphic features, and microcephaly. Using a combination of patient genomic and transcriptomic data, in silico modeling, in vitro assays, and in vivo Drosophila and zebrafish models, this study implicates disruption of DDX39B in a novel neurodevelopmental disorder called TREX-complex-related neurodevelopmental syndrome. Supported by ORIP (U54OD030165).
Enterohemorrhagic Escherichia coli (EHEC) Disrupts Intestinal Barrier Integrity in Translational Canine Stem Cell-Derived Monolayers
Nagao et al., Microbiology Spectrum. 2024.
https://pubmed.ncbi.nlm.nih.gov/39162490/
EHEC produces Shiga toxin, which causes acute colitis with symptoms such as hemolytic uremic syndrome and bloody diarrhea. The researchers developed a colonoid-derived monolayer model to understand EHEC’s impact on canine gut health. Colonoid-derived monolayers co-cultured with EHEC demonstrated key differences compared with the control and nonpathogenic E. coli co-cultures. Scanning electron microscopy displayed EHEC aggregated and attached to the microvilli. EHEC-infected monolayers demonstrated significantly weakened membrane integrity and increased inflammatory cytokine production, specifically TNFα. The researchers developed a novel in vitro model that offers an additional platform for understanding the mechanisms of EHEC pathogenicity, developing therapeutics for EHEC, and studying additional enteric pathogens. Supported by ORIP (K01OD030515, R21OD031903).