Selected Grantee Publications
- Clear All
- 9 results found
- Other Animal Models
- 2023
- 2020
Single-Component Multilayered Self-Assembling Protein Nanoparticles Presenting Glycan-Trimmed Uncleaved Prefusion Optimized Envelope Trimers as HIV-1 Vaccine Candidates
Zhang, Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082823/
Researchers are interested in engineering protein nanoparticles to mimic virus-like particles for an HIV-1 vaccine. In this study, researchers explored a strategy that combines HIV envelope glycoprotein (Env) stabilization, nanoparticle display, and glycan trimming. They designed a panel of constructs for biochemical, biophysical, and structural characterization. Using female mice, female rabbits, and rhesus macaques of both sexes, they demonstrated that glycan trimming increases the frequency of vaccine responders and steers antibody responses away from immunodominant glycan holes and glycan patches. This work offers a potential strategy for overcoming the challenges posed by the Env glycan shield in vaccine development. Supported by ORIP (P51OD011133, P51OD011104, U42OD010442) and NIAID.
Global Frequency Analyses of Canine Progressive Rod-Cone Degeneration-Progressive Retinal Atrophy and Collie Eye Anomaly Using Commercial Genetic Testing Data
Clark et al., Genes (Basel). 2023.
https://pubmed.ncbi.nlm.nih.gov/38003037/
Hundreds of genetic variants associated with canine traits and disorders have been identified; however, the geographic distributions and changes in allele and genotype frequencies over prolonged, continuous periods of time are lacking. This study utilized a large set of genotypes from dogs tested for progressive rod-cone degeneration-progressive retinal atrophy (prcd‑PRA) and collie eye anomaly (CEA). Both diseases exhibited significant differences in genotype frequencies (p=2.7 × 10-152 for prcd-PRA and 0.023 for CEA) with opposing graphical trends. This study shows that genetic testing informed breeding decisions to produce fewer affected dogs. Supported by ORIP (K01OD027051).
A SACS Deletion Variant in Great Pyrenees Dogs Causes Autosomal Recessive Neuronal Degeneration
Ekenstedt et al., Human Genetics. 2023.
https://pubmed.ncbi.nlm.nih.gov/37758910/
ARSACS (autosomal recessive spastic ataxia of Charlevoix-Saguenay) is an early-onset, slowly progressive neurodegenerative disorder. To date, no naturally occurring large animal model has been reported for ARSACS. In this study, the authors describe a novel spontaneous genetic model for SACS-associated neuronal degeneration using Great Pyrenees dogs of both sexes. The canine models described in this study fit closely with the typical early‑onset ARSACS phenotype in humans, and molecular genetic studies demonstrated that these dogs exhibit a deleterious SACS mutation. The clinical and histopathological descriptions of this canine disorder contribute to the description of human ARSACS. Supported by ORIP (R01OD01027051).
Baseline Tumor Gene Expression Signatures Correlate With Chemoimmunotherapy Treatment Responsiveness in Canine B Cell Lymphoma
Dittrich et al., PLOS ONE. 2023.
https://pubmed.ncbi.nlm.nih.gov/37624862/
Pet dogs develop spontaneous diffuse large B cell lymphoma (DLBCL), and veterinary clinical trials have been employed to treat canine DLBCL and to inform clinical trials for their human companions. Investigators evaluated gene expression in lymph node aspirates from 18 trial dogs and defined good responders as those who relapsed after 90 days, and poor responders as those who relapsed prior to 90 days. They found increased CCND3 correlated with poor prognosis and increased CD36 correlated with good prognosis, as is observed in humans. These findings identify biomarkers that may help guide the choice of chemoimmunotherapy treatment in dogs. Supported by ORIP (K01OD028268) and NCI.
Canine Models of Charcot-Marie-Tooth: MTMR2, MPZ, and SH3TC2 Variants in Golden Retrievers With Congenital Hypomyelinating Polyneuropathy
Cook et al., Neuromuscular Disorders. 2023.
https://pubmed.ncbi.nlm.nih.gov/37400349/
Both demyelination and hypomyelination of the nervous system are associated with various clinical diseases. Using whole-genome sequencing, researchers determined the genetic underpinnings of congenital hypomyelinating polyneuropathy in canines of both sexes. These variants genetically describe the first peripheral nervous system–exclusive hypomyelinating polyneuropathies in dogs. By testing for these mutations, breeders can prevent the production of affected offspring. Supported by ORIP (K01OD027051, K01OD027058).
Proteomic Profiling of Extracellular Vesicles Isolated From Plasma and Peritoneal Exudate in Mice Induced by Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP)
Reyes et al., Toxins (Basel). 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467150/
Toxins in viperid snakes can induce clinically heterogeneous effects, but most viper venoms are composed of only 10 main protein families. Researchers investigated the proteome expression profile of extracellular vesicles isolated from biofluid samples from male and female mice after injection with crude venom and cysteine-rich secretory proteins. They reported changes in the expression of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. This work could be applied in future efforts for early detection and assessment of local effects. Supported by ORIP (P40OD010960), NIGMS, and NHLBI.
Ion Channel Function in Translational Bovine Gallbladder Cholangiocyte Organoids: Establishment and Characterization of a Novel Model System
Nagao and Ambrosini et al., Frontiers in Veterinary Science. 2023.
https://pubmed.ncbi.nlm.nih.gov/37303723/
The study of biliary physiology and pathophysiology has long been hindered by the lack of in vitro models that accurately reflect the complex functions of the biliary system. Recent advancements in 3D organoid technology may offer a promising solution to this issue. Bovine gallbladder models have recently gained attention in the investigation of human diseases due to their remarkable similarities in physiology and pathophysiology to the human gallbladder. In this study, the investigators successfully established and characterized bovine gallbladder cholangiocyte organoids (GCOs) that retain key characteristics of the gallbladder in vivo, including stem cell properties and proliferative capacity. Notably, their findings demonstrate that these organoids exhibit specific and functional cystic fibrosis transmembrane conductance regulator activity. These bovine GCOs represent a valuable tool for studying the physiology and pathophysiology of the gallbladder with human significance. Supported by ORIP (K01OD030515, R21OD031903).
Effect of the Snake Venom Component Crotamine on Lymphatic Endothelial Cell Responses and Lymph Transport
Si et al., Microcirculation. 2023.
https://onlinelibrary.wiley.com/doi/10.1111/micc.12775
The pathology of snake envenomation is closely tied to the severity of edema in the tissue surrounding the area of the bite. This study focused on one of the most abundant venom components in North American viper venom, crotamine, and the effects it has on the cells and function of the lymphatic system. The authors found that genes that encode targets of crotamine are highly present in lymphatic tissues and cells and that there is a differential distribution of those genes that correlates with phasic contractile activity. They found that crotamine potentiates calcium flux in human dermal lymphatic endothelial cells in response to stimulation with histamine and shear stress—but not alone—and that it alters the production of nitric oxide in response to shear, as well as changes the level of F-actin polymerization of those same cells. Crotamine alters lymphatic transport of large molecular weight tracers to local lymph nodes and is deposited within the node, mostly in the immediate subcapsular region. Results suggest that snake venom components may have an impact on the function of the lymphatic system and provide new targets for improved therapeutics to treat snakebites. Supported by ORIP (P40OD010960).
Biological Activities of a New Crotamine-like Peptide from Crotalus oreganus helleri on C2C12 and CHO Cell Lines, and Ultrastructural Changes on Motor Endplate and Striated Muscle
Salazar et al., Toxicon. 2020.
https://pubmed.ncbi.nlm.nih.gov/33065200/
Crotamine and crotamine-like peptides are non-enzymatic polypeptides found in high concentration in the Crotalus genus venom. Helleramine was isolated and purified from the venom of the rattlesnake, Crotalus oreganus helleri. Purified helleramine increased intracellular Ca2+ in Chinese Hamster Ovary (CHO) cell line, inhibited cell viability of C2C12 (immortalized skeletal myoblast) and promoted early apoptosis and cell death. Skeletal muscle harvested from mice 24 hours after helleramine injection showed contracted myofibrils and profound vacuolization, with loss of plasmatic and basal membrane integrity. The effects of helleramine provide evidence of myotoxic activities of crotamine-like peptides and their possible role in crotalid envenoming. Supported by ORIP (P40OD010960).