Selected Grantee Publications
- Clear All
- 7 results found
- Other Animal Models
- Cardiovascular
- Stem Cells/Regenerative Medicine
Local Tissue Response to a C-X-C Motif Chemokine Ligand 12 Therapy for Fecal Incontinence in a Rabbit Model
Ruetten et al., American Journal of Physiology—Gastrointestinal and Liver Physiology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39745592
Obstetric anal sphincter injury (OASI) occurs in 2–7% of vaginal childbirths. Surgical interventions for OASI are suboptimal, with 30% of women reporting continued reduction in quality of life due to long-term fecal incontinence. Researchers used a 4- to 5-month-old female New Zealand white rabbit model for OASI to determine whether local C-X-C motif chemokine ligand 12 (CXCL12) injection reduces postinjury pathologies. Treatment with CXCL12 significantly reduced fibrosis. Untreated rabbits demonstrated reduced distinction of anal sphincter skeletal muscle layering and significantly increased the amount of fibrosis. Treatment with CXCL12 did not affect recruitment of CD34+ cells, the number of PAX7+ satellite cells, or innervation and vascularization of skeletal muscle. This pilot study demonstrates the potential of a novel therapeutic for OASI. Supported by ORIP (T32OD010957).
Biocompatibility and Bone Regeneration by Shape Memory Polymer Scaffolds
Gasson et al., Journal of Biomedical Materials Research Part A. 2025.
https://pubmed.ncbi.nlm.nih.gov/39404147
This study evaluates the potential of shape memory polymer (SMP) scaffolds for bone tissue engineering, focusing on their biocompatibility and ability to support bone regeneration. Researchers first demonstrated biocompatibility of SMP scaffolds in 12-week-old male Wistar rats and confirmed cell adhesion, proliferation, and differentiation, while promoting bone regeneration in 6 month-old male New Zealand white rabbits with induced bone defects. These scaffolds combine mechanical strength with the capacity to enhance biological healing, making them a promising tool for orthopedic applications. These findings highlight the potential of SMPs as a versatile platform for tissue engineering applications, combining structural support with biocompatibility to enhance bone repair and healing outcomes. Supported by ORIP (T32OD011083).
The Splicing Factor hnRNPL Demonstrates Conserved Myocardial Regulation Across Species and Is Altered in Heart Failure
Draper et al., FEBS Letters. 2024.
https://pubmed.ncbi.nlm.nih.gov/39300280/
The 5-year mortality rate of heart failure (HF) is approximately 50%. Gene splicing, induced by splice factors, is a post-transcriptional modification of mRNA that may regulate pathological remodeling in HF. Researchers investigated the role of the splice factor heterogenous nuclear ribonucleoprotein-L (hnRNPL) in cardiomyopathy. hnRNPL protein expression is significantly increased in a male C57BL/6 transaortic constriction–induced HF mouse model and in clinical samples derived from canine or human HF patients. Cardiac-restricted knockdown of the hnRNPL homolog in Drosophila revealed systolic dysfunction and reduced life span. This study demonstrates a conserved cross-species role of hnRNPL in regulating heart function. Supported by ORIP (K01OD028205) and NHLBI.
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
Enterohemorrhagic Escherichia coli (EHEC) Disrupts Intestinal Barrier Integrity in Translational Canine Stem Cell-Derived Monolayers
Nagao et al., Microbiology Spectrum. 2024.
https://pubmed.ncbi.nlm.nih.gov/39162490/
EHEC produces Shiga toxin, which causes acute colitis with symptoms such as hemolytic uremic syndrome and bloody diarrhea. The researchers developed a colonoid-derived monolayer model to understand EHEC’s impact on canine gut health. Colonoid-derived monolayers co-cultured with EHEC demonstrated key differences compared with the control and nonpathogenic E. coli co-cultures. Scanning electron microscopy displayed EHEC aggregated and attached to the microvilli. EHEC-infected monolayers demonstrated significantly weakened membrane integrity and increased inflammatory cytokine production, specifically TNFα. The researchers developed a novel in vitro model that offers an additional platform for understanding the mechanisms of EHEC pathogenicity, developing therapeutics for EHEC, and studying additional enteric pathogens. Supported by ORIP (K01OD030515, R21OD031903).
Ion Channel Function in Translational Bovine Gallbladder Cholangiocyte Organoids: Establishment and Characterization of a Novel Model System
Nagao and Ambrosini et al., Frontiers in Veterinary Science. 2023.
https://pubmed.ncbi.nlm.nih.gov/37303723/
The study of biliary physiology and pathophysiology has long been hindered by the lack of in vitro models that accurately reflect the complex functions of the biliary system. Recent advancements in 3D organoid technology may offer a promising solution to this issue. Bovine gallbladder models have recently gained attention in the investigation of human diseases due to their remarkable similarities in physiology and pathophysiology to the human gallbladder. In this study, the investigators successfully established and characterized bovine gallbladder cholangiocyte organoids (GCOs) that retain key characteristics of the gallbladder in vivo, including stem cell properties and proliferative capacity. Notably, their findings demonstrate that these organoids exhibit specific and functional cystic fibrosis transmembrane conductance regulator activity. These bovine GCOs represent a valuable tool for studying the physiology and pathophysiology of the gallbladder with human significance. Supported by ORIP (K01OD030515, R21OD031903).
Negative Inotropic Mechanisms of β-cardiotoxin in Cardiomyocytes by Depression of Myofilament ATPase Activity without Activation of the Classical β-Adrenergic Pathway
Lertwanakarn et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-00282-x
Beta-cardiotoxin (β-CTX) from the king cobra venom (Ophiophagus hannah) was previously proposed as a novel β-adrenergic blocker. However, the involvement of β-adrenergic signaling by this compound has never been elucidated. The objectives of this study were to investigate the underlying mechanisms of β-CTX as a β-blocker and its association with the β-adrenergic pathway. Healthy Sprague Dawley rats were used for cardiomyocytes isolation. In summary, the negative inotropic mechanism of β-CTX was discovered. β-CTX exhibits an atypical β-blocker mechanism. These properties of β-CTX may benefit in developing a novel agent aid to treat hypertrophic cardiomyopathy. Supported by ORIP (P40OD010960) and NHLBI.