Selected Grantee Publications
- Clear All
- 11 results found
- Other Animal Models
- Immunology
- Somatic Cell Genome Editing
MARCKS Protein Is a Potential Target in a Naturally Occurring Equine Model of Neutrophilic Asthma
Conley et al., Respiratory Research. 2025.
https://pubmed.ncbi.nlm.nih.gov/40176021
Asthma is a chronic inflammatory airway disease that affects millions of people worldwide. Horses spontaneously develop asthma similar to humans, making the equine model ideal for studying airway inflammation. This study revealed that Myristoylated Alanine Rich C Kinase Substrate (MARCKS) protein levels were elevated in immune cells (macrophages and neutrophils) of male and female horses. Blocking this protein reduced inflammatory responses in these cells, suggesting that MARCKS may play a key role in driving asthma symptoms. These findings suggest that the MARCKS protein could potentially be a therapeutic target to reduce inflammation in severe neutrophilic asthma cases. Supported by ORIP (T32OD011130).
Matrikine Stimulation of Equine Synovial Fibroblasts and Chondrocytes Results in an In Vitro Osteoarthritis Phenotype
Gagliardi et al., Journal of Orthopaedic Research. 2025.
https://pubmed.ncbi.nlm.nih.gov/39486895
Advancements in therapy development for osteoarthritis (OA) currently are limited due to a lack of physiologically relevant in vitro models. This study aimed to understand the effect of matrikine stimulation, using human recombinant fibronectin fragment containing domains 7–10 (FN7–10), on equine synovial fibroblasts and chondrocytes. Inflammatory cytokines, chemokines, and matrix degradation genes in equine synovial fibroblasts and chondrocytes were significantly altered in response to FN7–10 stimulation; marked upregulation was observed in interleukin-6 (IL-6), IL-4, IL-10, matrix metalloproteinase 1 (MMP1), MMP3, MMP13, CCL2/MCP1, and CXCL6/GCP-2 gene expression. Only IL-6 protein production was significantly increased in media isolated from cells stimulated with FN7–10. These results support the potential use of equine synovial fibroblasts and chondrocytes—employing FN7–10—as representative in vitro models to study OA. Supported by ORIP (T32OD011130) and NIAMS.
Extracted Plasma Cell-Free DNA Concentrations Are Elevated in Colic Patients With Systemic Inflammation
Bayless et al., Veterinary Sciences. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11435807
Researchers investigated cell-free DNA (cfDNA) as a potential biomarker to detect colic in humans. In horses, colic is a life-threatening gastrointestinal (GI) condition. Measurements of cfDNA released from damaged or dying cells in the blood of male and female horses with colic were compared across groups based on GI disease type, signs of inflammation, and survival status. Elevated cfDNA levels were prominent in horses with systemic inflammation, but did not significantly differ by GI disease type or survival. This study suggests that cfDNA may be linked to inflammatory responses in colic conditions. Supported by ORIP (T32OD011130).
A Comparative Review of Cytokines and Cytokine Targeting in Sepsis: From Humans to Horses
Hobbs et al., Cells. 2024.
https://pubmed.ncbi.nlm.nih.gov/39273060
Bacterial infections resulting in endotoxin or exotoxin exposure can lead to sepsis because of dysregulated host responses. Sepsis causes organ dysfunction that can lead to death if not treated immediately, yet no proven pharmacological treatments exist. Horses can serve as a comparative and translational model for sepsis in humans because both species share mechanisms of immune response, including severe neutropenia, cytokine storms, formation of neutrophil extracellular traps, and decreased perfusion. Research on sepsis has focused on the pathophysiological role of interleukin-6, interleukin-1β, tumor necrosis factor-α, and interleukin10. Research on novel sepsis therapies has focused on monoclonal antibodies, cytokine antagonists, and cytokine removal through extracorporeal hemoperfusion. Future sepsis research should focus on optimizing therapeutic strategies of cytokine modulation and analyzing the underlying mechanisms of cytokine dysregulation. Supported by ORIP (T32OD011130).
Proinflammatory Cytokines Suppress Stemness-Related Properties and Expression of Tight Junction in Canine Intestinal Organoids
Nakazawa et al., In Vitro Cellular & Developmental Biology—Animal. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11419940
Cells in the gastrointestinal tract are exposed to numerous stressors that can promote excessive inflammation, including environmental chemicals and dietary substances. Researchers studied how canine intestinal epithelial cell (IEC)–derived organoids responded to exposure to one of three proinflammatory cytokines; interferon-γ (IFN-γ), tumor necrosis factor-α (TNFα), or interleukin-1β (IL1β). Exposure to IFN-γ resulted in downregulation of the stem cell marker Lgr5. Only IFN-γ exposure resulted in increased production of caspase 3 and caspase 8. Exposure to either IFN-γ or IL1β resulted in suppressed cell proliferation. The pro-inflammatory cytokines caused reduced tight junction protein expression and compromised membrane integrity. These findings are important to understanding IEC response to different inflammatory stimuli and to broadening knowledge of gut physiology. Supported by ORIP (K01OD030515, R21OD031903).
A Review of CD4+ T Cell Differentiation and Diversity in Dogs
Lang et al., Veterinary Immunology and Immunopathology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39173398
CD4+ T cells are an important component of both the adaptive immune response and immune maintenance. They carry out many functions and can differentiate into numerous specialized subsets, including T helper type 1 (TH1), TH2, TH9, TH17, and TH22 cells; regulatory T cells; and follicular T helper cells. CD4+ T cells also have the capacity for long-term immunological memory and rapid reactivation upon secondary exposure. However, our understanding of the role of CD4+ T cells in immune response is largely based on studies in mice, humans, and—to a lesser extent—pigs. Comparatively, our understanding of CD4+ T cells in canines is much less complete. This review summarizes the current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T-cell biology. Supported by ORIP (K01OD027058).
The Gene Expression Profile and Cell of Origin of Canine Peripheral T-Cell Lymphoma
Owens et al., BMC Cancer. 2024.
https://pubmed.ncbi.nlm.nih.gov/38166662/
Peripheral T-cell lymphoma (PTCL) refers to a heterogenous group of T-cell neoplasms with poor treatment responses and survival times. Canine PTCL clinically and immunophenotypically resembles the most common human subtype, PTCL-NOS (PTCL-not otherwise specified), and is a naturally occurring model for human PTCL. Gene expression profiling in human PTCL-NOS has helped characterize this ambiguous diagnosis into distinct subtypes, but similar gene expression profiling in canine PTCL is lacking. Canine CD4+ PTCL most closely resembles the GATA3-PTCL subtype of PTCL-NOS and may originate from an earlier stage of T-cell development than the more conventionally posited mature T-helper cell origin. Supported by ORIP (T32OD010437).
Single-Component Multilayered Self-Assembling Protein Nanoparticles Presenting Glycan-Trimmed Uncleaved Prefusion Optimized Envelope Trimers as HIV-1 Vaccine Candidates
Zhang, Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082823/
Researchers are interested in engineering protein nanoparticles to mimic virus-like particles for an HIV-1 vaccine. In this study, researchers explored a strategy that combines HIV envelope glycoprotein (Env) stabilization, nanoparticle display, and glycan trimming. They designed a panel of constructs for biochemical, biophysical, and structural characterization. Using female mice, female rabbits, and rhesus macaques of both sexes, they demonstrated that glycan trimming increases the frequency of vaccine responders and steers antibody responses away from immunodominant glycan holes and glycan patches. This work offers a potential strategy for overcoming the challenges posed by the Env glycan shield in vaccine development. Supported by ORIP (P51OD011133, P51OD011104, U42OD010442) and NIAID.
Proteomic Profiling of Extracellular Vesicles Isolated From Plasma and Peritoneal Exudate in Mice Induced by Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP)
Reyes et al., Toxins (Basel). 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467150/
Toxins in viperid snakes can induce clinically heterogeneous effects, but most viper venoms are composed of only 10 main protein families. Researchers investigated the proteome expression profile of extracellular vesicles isolated from biofluid samples from male and female mice after injection with crude venom and cysteine-rich secretory proteins. They reported changes in the expression of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. This work could be applied in future efforts for early detection and assessment of local effects. Supported by ORIP (P40OD010960), NIGMS, and NHLBI.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.