Selected Grantee Publications
- Clear All
- 15 results found
- Other Animal Models
- Cancer
- Immunology
MARCKS Protein Is a Potential Target in a Naturally Occurring Equine Model of Neutrophilic Asthma
Conley et al., Respiratory Research. 2025.
https://pubmed.ncbi.nlm.nih.gov/40176021
Asthma is a chronic inflammatory airway disease that affects millions of people worldwide. Horses spontaneously develop asthma similar to humans, making the equine model ideal for studying airway inflammation. This study revealed that Myristoylated Alanine Rich C Kinase Substrate (MARCKS) protein levels were elevated in immune cells (macrophages and neutrophils) of male and female horses. Blocking this protein reduced inflammatory responses in these cells, suggesting that MARCKS may play a key role in driving asthma symptoms. These findings suggest that the MARCKS protein could potentially be a therapeutic target to reduce inflammation in severe neutrophilic asthma cases. Supported by ORIP (T32OD011130).
Matrikine Stimulation of Equine Synovial Fibroblasts and Chondrocytes Results in an In Vitro Osteoarthritis Phenotype
Gagliardi et al., Journal of Orthopaedic Research. 2025.
https://pubmed.ncbi.nlm.nih.gov/39486895
Advancements in therapy development for osteoarthritis (OA) currently are limited due to a lack of physiologically relevant in vitro models. This study aimed to understand the effect of matrikine stimulation, using human recombinant fibronectin fragment containing domains 7–10 (FN7–10), on equine synovial fibroblasts and chondrocytes. Inflammatory cytokines, chemokines, and matrix degradation genes in equine synovial fibroblasts and chondrocytes were significantly altered in response to FN7–10 stimulation; marked upregulation was observed in interleukin-6 (IL-6), IL-4, IL-10, matrix metalloproteinase 1 (MMP1), MMP3, MMP13, CCL2/MCP1, and CXCL6/GCP-2 gene expression. Only IL-6 protein production was significantly increased in media isolated from cells stimulated with FN7–10. These results support the potential use of equine synovial fibroblasts and chondrocytes—employing FN7–10—as representative in vitro models to study OA. Supported by ORIP (T32OD011130) and NIAMS.
Response of Spontaneous Oral Tumors in Canine Cancer Patients Treated With Stereotactic Body Radiation Therapy (SBRT)
Gualtieri et al., Radiation Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/39478420
This single-institution retrospective study assessed outcomes in 98 dogs with oral tumors after treatment with SBRT. Overall, progression-free survival (PFS) was 152 days, and median survival time (MST) was 270 days for dogs with oral malignant melanoma, squamous cell carcinoma, and soft tissue sarcoma following SBRT, with no significant differences among the groups. Shortened PFS and MST were associated with lymph node metastasis and the use of elective nodal irradiation. Adverse effects of SBRT were common within the study population and included organ toxicities (11.8%) and the formation of certain fistulas (28.4%). The authors concluded that the presence of these adverse effects warrants a re-evaluation of SBRT risk factors and protocols. Supported by ORIP (K01OD031809).
Extracted Plasma Cell-Free DNA Concentrations Are Elevated in Colic Patients With Systemic Inflammation
Bayless et al., Veterinary Sciences. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11435807
Researchers investigated cell-free DNA (cfDNA) as a potential biomarker to detect colic in humans. In horses, colic is a life-threatening gastrointestinal (GI) condition. Measurements of cfDNA released from damaged or dying cells in the blood of male and female horses with colic were compared across groups based on GI disease type, signs of inflammation, and survival status. Elevated cfDNA levels were prominent in horses with systemic inflammation, but did not significantly differ by GI disease type or survival. This study suggests that cfDNA may be linked to inflammatory responses in colic conditions. Supported by ORIP (T32OD011130).
A Comparative Review of Cytokines and Cytokine Targeting in Sepsis: From Humans to Horses
Hobbs et al., Cells. 2024.
https://pubmed.ncbi.nlm.nih.gov/39273060
Bacterial infections resulting in endotoxin or exotoxin exposure can lead to sepsis because of dysregulated host responses. Sepsis causes organ dysfunction that can lead to death if not treated immediately, yet no proven pharmacological treatments exist. Horses can serve as a comparative and translational model for sepsis in humans because both species share mechanisms of immune response, including severe neutropenia, cytokine storms, formation of neutrophil extracellular traps, and decreased perfusion. Research on sepsis has focused on the pathophysiological role of interleukin-6, interleukin-1β, tumor necrosis factor-α, and interleukin10. Research on novel sepsis therapies has focused on monoclonal antibodies, cytokine antagonists, and cytokine removal through extracorporeal hemoperfusion. Future sepsis research should focus on optimizing therapeutic strategies of cytokine modulation and analyzing the underlying mechanisms of cytokine dysregulation. Supported by ORIP (T32OD011130).
Proinflammatory Cytokines Suppress Stemness-Related Properties and Expression of Tight Junction in Canine Intestinal Organoids
Nakazawa et al., In Vitro Cellular & Developmental Biology—Animal. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11419940
Cells in the gastrointestinal tract are exposed to numerous stressors that can promote excessive inflammation, including environmental chemicals and dietary substances. Researchers studied how canine intestinal epithelial cell (IEC)–derived organoids responded to exposure to one of three proinflammatory cytokines; interferon-γ (IFN-γ), tumor necrosis factor-α (TNFα), or interleukin-1β (IL1β). Exposure to IFN-γ resulted in downregulation of the stem cell marker Lgr5. Only IFN-γ exposure resulted in increased production of caspase 3 and caspase 8. Exposure to either IFN-γ or IL1β resulted in suppressed cell proliferation. The pro-inflammatory cytokines caused reduced tight junction protein expression and compromised membrane integrity. These findings are important to understanding IEC response to different inflammatory stimuli and to broadening knowledge of gut physiology. Supported by ORIP (K01OD030515, R21OD031903).
Establishment and Characterization of Three Human Ocular Adnexal Sebaceous Carcinoma Cell Lines
Lee et al., International Journal of Molecular Sciences. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11432008
Researchers established three new cell lines to model ocular adnexal sebaceous carcinoma (SebCA) and test new therapies. SebCA is a highly problematic periorbital tumor requiring aggressive surgical treatment, and its pathobiology remains poorly understood. With consent from one male and two female patients, tumor tissue was cultured under conditional reprograming, and the cells were analyzed for growth, clonogenicity, apoptosis, and differentiation using methods including western blotting, short tandem repeat profiling, and next-generation sequencing. These newly developed cell lines provide valuable preclinical models for understanding and treating SebCA. Supported by ORIP (K01OD034451).
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
A Review of CD4+ T Cell Differentiation and Diversity in Dogs
Lang et al., Veterinary Immunology and Immunopathology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39173398
CD4+ T cells are an important component of both the adaptive immune response and immune maintenance. They carry out many functions and can differentiate into numerous specialized subsets, including T helper type 1 (TH1), TH2, TH9, TH17, and TH22 cells; regulatory T cells; and follicular T helper cells. CD4+ T cells also have the capacity for long-term immunological memory and rapid reactivation upon secondary exposure. However, our understanding of the role of CD4+ T cells in immune response is largely based on studies in mice, humans, and—to a lesser extent—pigs. Comparatively, our understanding of CD4+ T cells in canines is much less complete. This review summarizes the current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T-cell biology. Supported by ORIP (K01OD027058).
Alterations in Tumor Aggression Following Androgen Receptor Signaling Restoration in Canine Prostate Cancer Cell Lines
Vasilatis et al., International Journal of Molecular Sciences. 2024.
https://pubmed.ncbi.nlm.nih.gov/39201315
Prostate cancer (PCa) ranks second worldwide in cancer-related mortality, but only a few animal models exhibit naturally occurring PCa that recapitulates the symptoms of the disease. Neutered dogs have an increased risk of PCa and often lack androgen receptor (AR) signaling, which is involved in upregulating tumorigenesis but can also suppress aggressive cell growth. In this study, researchers sought to understand more about the role of AR signaling in canine PCa initiation and progression by restoring AR in canine PCa cell lines and treating them with dihydrotestosterone. One cell line exhibited AR-mediated tumor suppression; one cell line showed altered proliferation (but not migration or invasion); and a third cell line exhibited AR-mediated alterations in migration and invasion (but not proliferation). The study highlights the heterogeneous nature of PCa in dogs and humans but suggests that AR signaling might have therapeutic potential under certain conditions. Supported by ORIP (T32OD011147).