Selected Grantee Publications
- Clear All
- 10 results found
- Other Animal Models
- Neurological
- Vaccines/Therapeutics
Local Tissue Response to a C-X-C Motif Chemokine Ligand 12 Therapy for Fecal Incontinence in a Rabbit Model
Ruetten et al., American Journal of Physiology—Gastrointestinal and Liver Physiology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39745592
Obstetric anal sphincter injury (OASI) occurs in 2–7% of vaginal childbirths. Surgical interventions for OASI are suboptimal, with 30% of women reporting continued reduction in quality of life due to long-term fecal incontinence. Researchers used a 4- to 5-month-old female New Zealand white rabbit model for OASI to determine whether local C-X-C motif chemokine ligand 12 (CXCL12) injection reduces postinjury pathologies. Treatment with CXCL12 significantly reduced fibrosis. Untreated rabbits demonstrated reduced distinction of anal sphincter skeletal muscle layering and significantly increased the amount of fibrosis. Treatment with CXCL12 did not affect recruitment of CD34+ cells, the number of PAX7+ satellite cells, or innervation and vascularization of skeletal muscle. This pilot study demonstrates the potential of a novel therapeutic for OASI. Supported by ORIP (T32OD010957).
Spatiotemporal Characterization of Cyclooxygenase Pathway Enzymes During Vertebrate Embryonic Development
Leathers et al., Developmental Biology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39581452/
The cyclooxygenase (COX) pathway plays a fundamental role in embryonic development. Disruptions of the COX pathway during pregnancy cause developmental anomalies, including craniofacial clefts, impaired gut innervation, and neural tube defects in the embryo. Researchers used Gallus gallus embryos to study the expression of COX pathway enzymes during neurulation. COX-1 protein expression was upregulated in cells undergoing mitosis, whereas COX-2 protein expression was ubiquitous. This study provides spatiotemporal expression data of COX pathway enzymes at key embryonic development stages in G. gallus and guides future studies focused on defining the role of these enzymes during embryonic development. Supported by ORIP (T35OD010956), NEI, NIDCR, and NIGMS.
A Comparative Review of Cytokines and Cytokine Targeting in Sepsis: From Humans to Horses
Hobbs et al., Cells. 2024.
https://pubmed.ncbi.nlm.nih.gov/39273060
Bacterial infections resulting in endotoxin or exotoxin exposure can lead to sepsis because of dysregulated host responses. Sepsis causes organ dysfunction that can lead to death if not treated immediately, yet no proven pharmacological treatments exist. Horses can serve as a comparative and translational model for sepsis in humans because both species share mechanisms of immune response, including severe neutropenia, cytokine storms, formation of neutrophil extracellular traps, and decreased perfusion. Research on sepsis has focused on the pathophysiological role of interleukin-6, interleukin-1β, tumor necrosis factor-α, and interleukin10. Research on novel sepsis therapies has focused on monoclonal antibodies, cytokine antagonists, and cytokine removal through extracorporeal hemoperfusion. Future sepsis research should focus on optimizing therapeutic strategies of cytokine modulation and analyzing the underlying mechanisms of cytokine dysregulation. Supported by ORIP (T32OD011130).
Canine RNF170 Single Base Deletion in a Naturally Occurring Model for Human Neuroaxonal Dystrophy
Cook et al., Movement Disorders. 2024.
https://pubmed.ncbi.nlm.nih.gov/39177409/
A newly recognized progressive neurodegenerative disorder in Miniature American Shepherd (MAS) dogs affects gait in young adult dogs and is characterized by pelvic limb weakness and ataxia. The authors of this study used genetic analysis to map the underlying cause of the disorder, a single base-pair deletion in the ring finger protein 170 (RNF170) gene that was predicted to cause early truncation of the RNF170 protein. RNF170 variants previously were identified in human patients with spastic paraplegia-85 (SPG85) who exhibit similar clinical and pathological phenotypes to RNF170-mutant dogs. SPG85 belongs to a group of inherited neurodegenerative disorders collectively referred to as neuroaxonal dystrophy (NAD). The authors of this paper propose that RNF170-mutant MAS dogs serve as a large animal model to study underlying mechanisms and therapeutics for NAD. Supported by ORIP (K01OD027051).
Single-Component Multilayered Self-Assembling Protein Nanoparticles Presenting Glycan-Trimmed Uncleaved Prefusion Optimized Envelope Trimers as HIV-1 Vaccine Candidates
Zhang, Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082823/
Researchers are interested in engineering protein nanoparticles to mimic virus-like particles for an HIV-1 vaccine. In this study, researchers explored a strategy that combines HIV envelope glycoprotein (Env) stabilization, nanoparticle display, and glycan trimming. They designed a panel of constructs for biochemical, biophysical, and structural characterization. Using female mice, female rabbits, and rhesus macaques of both sexes, they demonstrated that glycan trimming increases the frequency of vaccine responders and steers antibody responses away from immunodominant glycan holes and glycan patches. This work offers a potential strategy for overcoming the challenges posed by the Env glycan shield in vaccine development. Supported by ORIP (P51OD011133, P51OD011104, U42OD010442) and NIAID.
A SACS Deletion Variant in Great Pyrenees Dogs Causes Autosomal Recessive Neuronal Degeneration
Ekenstedt et al., Human Genetics. 2023.
https://pubmed.ncbi.nlm.nih.gov/37758910/
ARSACS (autosomal recessive spastic ataxia of Charlevoix-Saguenay) is an early-onset, slowly progressive neurodegenerative disorder. To date, no naturally occurring large animal model has been reported for ARSACS. In this study, the authors describe a novel spontaneous genetic model for SACS-associated neuronal degeneration using Great Pyrenees dogs of both sexes. The canine models described in this study fit closely with the typical early‑onset ARSACS phenotype in humans, and molecular genetic studies demonstrated that these dogs exhibit a deleterious SACS mutation. The clinical and histopathological descriptions of this canine disorder contribute to the description of human ARSACS. Supported by ORIP (R01OD01027051).
Baseline Tumor Gene Expression Signatures Correlate With Chemoimmunotherapy Treatment Responsiveness in Canine B Cell Lymphoma
Dittrich et al., PLOS ONE. 2023.
https://pubmed.ncbi.nlm.nih.gov/37624862/
Pet dogs develop spontaneous diffuse large B cell lymphoma (DLBCL), and veterinary clinical trials have been employed to treat canine DLBCL and to inform clinical trials for their human companions. Investigators evaluated gene expression in lymph node aspirates from 18 trial dogs and defined good responders as those who relapsed after 90 days, and poor responders as those who relapsed prior to 90 days. They found increased CCND3 correlated with poor prognosis and increased CD36 correlated with good prognosis, as is observed in humans. These findings identify biomarkers that may help guide the choice of chemoimmunotherapy treatment in dogs. Supported by ORIP (K01OD028268) and NCI.
Canine Models of Charcot-Marie-Tooth: MTMR2, MPZ, and SH3TC2 Variants in Golden Retrievers With Congenital Hypomyelinating Polyneuropathy
Cook et al., Neuromuscular Disorders. 2023.
https://pubmed.ncbi.nlm.nih.gov/37400349/
Both demyelination and hypomyelination of the nervous system are associated with various clinical diseases. Using whole-genome sequencing, researchers determined the genetic underpinnings of congenital hypomyelinating polyneuropathy in canines of both sexes. These variants genetically describe the first peripheral nervous system–exclusive hypomyelinating polyneuropathies in dogs. By testing for these mutations, breeders can prevent the production of affected offspring. Supported by ORIP (K01OD027051, K01OD027058).
Effect of the Snake Venom Component Crotamine on Lymphatic Endothelial Cell Responses and Lymph Transport
Si et al., Microcirculation. 2023.
https://onlinelibrary.wiley.com/doi/10.1111/micc.12775
The pathology of snake envenomation is closely tied to the severity of edema in the tissue surrounding the area of the bite. This study focused on one of the most abundant venom components in North American viper venom, crotamine, and the effects it has on the cells and function of the lymphatic system. The authors found that genes that encode targets of crotamine are highly present in lymphatic tissues and cells and that there is a differential distribution of those genes that correlates with phasic contractile activity. They found that crotamine potentiates calcium flux in human dermal lymphatic endothelial cells in response to stimulation with histamine and shear stress—but not alone—and that it alters the production of nitric oxide in response to shear, as well as changes the level of F-actin polymerization of those same cells. Crotamine alters lymphatic transport of large molecular weight tracers to local lymph nodes and is deposited within the node, mostly in the immediate subcapsular region. Results suggest that snake venom components may have an impact on the function of the lymphatic system and provide new targets for improved therapeutics to treat snakebites. Supported by ORIP (P40OD010960).
Negative Inotropic Mechanisms of β-cardiotoxin in Cardiomyocytes by Depression of Myofilament ATPase Activity without Activation of the Classical β-Adrenergic Pathway
Lertwanakarn et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-00282-x
Beta-cardiotoxin (β-CTX) from the king cobra venom (Ophiophagus hannah) was previously proposed as a novel β-adrenergic blocker. However, the involvement of β-adrenergic signaling by this compound has never been elucidated. The objectives of this study were to investigate the underlying mechanisms of β-CTX as a β-blocker and its association with the β-adrenergic pathway. Healthy Sprague Dawley rats were used for cardiomyocytes isolation. In summary, the negative inotropic mechanism of β-CTX was discovered. β-CTX exhibits an atypical β-blocker mechanism. These properties of β-CTX may benefit in developing a novel agent aid to treat hypertrophic cardiomyopathy. Supported by ORIP (P40OD010960) and NHLBI.