Selected Grantee Publications
- Clear All
- 9 results found
- Other Animal Models
- Cancer
- Vaccines/Therapeutics
A Comparative Review of Cytokines and Cytokine Targeting in Sepsis: From Humans to Horses
Hobbs et al., Cells. 2024.
https://pubmed.ncbi.nlm.nih.gov/39273060
Bacterial infections resulting in endotoxin or exotoxin exposure can lead to sepsis because of dysregulated host responses. Sepsis causes organ dysfunction that can lead to death if not treated immediately, yet no proven pharmacological treatments exist. Horses can serve as a comparative and translational model for sepsis in humans because both species share mechanisms of immune response, including severe neutropenia, cytokine storms, formation of neutrophil extracellular traps, and decreased perfusion. Research on sepsis has focused on the pathophysiological role of interleukin-6, interleukin-1β, tumor necrosis factor-α, and interleukin10. Research on novel sepsis therapies has focused on monoclonal antibodies, cytokine antagonists, and cytokine removal through extracorporeal hemoperfusion. Future sepsis research should focus on optimizing therapeutic strategies of cytokine modulation and analyzing the underlying mechanisms of cytokine dysregulation. Supported by ORIP (T32OD011130).
Establishment and Characterization of Three Human Ocular Adnexal Sebaceous Carcinoma Cell Lines
Lee et al., International Journal of Molecular Sciences. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11432008
Researchers established three new cell lines to model ocular adnexal sebaceous carcinoma (SebCA) and test new therapies. SebCA is a highly problematic periorbital tumor requiring aggressive surgical treatment, and its pathobiology remains poorly understood. With consent from one male and two female patients, tumor tissue was cultured under conditional reprograming, and the cells were analyzed for growth, clonogenicity, apoptosis, and differentiation using methods including western blotting, short tandem repeat profiling, and next-generation sequencing. These newly developed cell lines provide valuable preclinical models for understanding and treating SebCA. Supported by ORIP (K01OD034451).
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
Alterations in Tumor Aggression Following Androgen Receptor Signaling Restoration in Canine Prostate Cancer Cell Lines
Vasilatis et al., International Journal of Molecular Sciences. 2024.
https://pubmed.ncbi.nlm.nih.gov/39201315
Prostate cancer (PCa) ranks second worldwide in cancer-related mortality, but only a few animal models exhibit naturally occurring PCa that recapitulates the symptoms of the disease. Neutered dogs have an increased risk of PCa and often lack androgen receptor (AR) signaling, which is involved in upregulating tumorigenesis but can also suppress aggressive cell growth. In this study, researchers sought to understand more about the role of AR signaling in canine PCa initiation and progression by restoring AR in canine PCa cell lines and treating them with dihydrotestosterone. One cell line exhibited AR-mediated tumor suppression; one cell line showed altered proliferation (but not migration or invasion); and a third cell line exhibited AR-mediated alterations in migration and invasion (but not proliferation). The study highlights the heterogeneous nature of PCa in dogs and humans but suggests that AR signaling might have therapeutic potential under certain conditions. Supported by ORIP (T32OD011147).
Single-Component Multilayered Self-Assembling Protein Nanoparticles Presenting Glycan-Trimmed Uncleaved Prefusion Optimized Envelope Trimers as HIV-1 Vaccine Candidates
Zhang, Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082823/
Researchers are interested in engineering protein nanoparticles to mimic virus-like particles for an HIV-1 vaccine. In this study, researchers explored a strategy that combines HIV envelope glycoprotein (Env) stabilization, nanoparticle display, and glycan trimming. They designed a panel of constructs for biochemical, biophysical, and structural characterization. Using female mice, female rabbits, and rhesus macaques of both sexes, they demonstrated that glycan trimming increases the frequency of vaccine responders and steers antibody responses away from immunodominant glycan holes and glycan patches. This work offers a potential strategy for overcoming the challenges posed by the Env glycan shield in vaccine development. Supported by ORIP (P51OD011133, P51OD011104, U42OD010442) and NIAID.
Baseline Tumor Gene Expression Signatures Correlate With Chemoimmunotherapy Treatment Responsiveness in Canine B Cell Lymphoma
Dittrich et al., PLOS ONE. 2023.
https://pubmed.ncbi.nlm.nih.gov/37624862/
Pet dogs develop spontaneous diffuse large B cell lymphoma (DLBCL), and veterinary clinical trials have been employed to treat canine DLBCL and to inform clinical trials for their human companions. Investigators evaluated gene expression in lymph node aspirates from 18 trial dogs and defined good responders as those who relapsed after 90 days, and poor responders as those who relapsed prior to 90 days. They found increased CCND3 correlated with poor prognosis and increased CD36 correlated with good prognosis, as is observed in humans. These findings identify biomarkers that may help guide the choice of chemoimmunotherapy treatment in dogs. Supported by ORIP (K01OD028268) and NCI.
Effect of the Snake Venom Component Crotamine on Lymphatic Endothelial Cell Responses and Lymph Transport
Si et al., Microcirculation. 2023.
https://onlinelibrary.wiley.com/doi/10.1111/micc.12775
The pathology of snake envenomation is closely tied to the severity of edema in the tissue surrounding the area of the bite. This study focused on one of the most abundant venom components in North American viper venom, crotamine, and the effects it has on the cells and function of the lymphatic system. The authors found that genes that encode targets of crotamine are highly present in lymphatic tissues and cells and that there is a differential distribution of those genes that correlates with phasic contractile activity. They found that crotamine potentiates calcium flux in human dermal lymphatic endothelial cells in response to stimulation with histamine and shear stress—but not alone—and that it alters the production of nitric oxide in response to shear, as well as changes the level of F-actin polymerization of those same cells. Crotamine alters lymphatic transport of large molecular weight tracers to local lymph nodes and is deposited within the node, mostly in the immediate subcapsular region. Results suggest that snake venom components may have an impact on the function of the lymphatic system and provide new targets for improved therapeutics to treat snakebites. Supported by ORIP (P40OD010960).
Negative Inotropic Mechanisms of β-cardiotoxin in Cardiomyocytes by Depression of Myofilament ATPase Activity without Activation of the Classical β-Adrenergic Pathway
Lertwanakarn et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-00282-x
Beta-cardiotoxin (β-CTX) from the king cobra venom (Ophiophagus hannah) was previously proposed as a novel β-adrenergic blocker. However, the involvement of β-adrenergic signaling by this compound has never been elucidated. The objectives of this study were to investigate the underlying mechanisms of β-CTX as a β-blocker and its association with the β-adrenergic pathway. Healthy Sprague Dawley rats were used for cardiomyocytes isolation. In summary, the negative inotropic mechanism of β-CTX was discovered. β-CTX exhibits an atypical β-blocker mechanism. These properties of β-CTX may benefit in developing a novel agent aid to treat hypertrophic cardiomyopathy. Supported by ORIP (P40OD010960) and NHLBI.