Selected Grantee Publications
- Clear All
- 6 results found
- Other Animal Models
- niaid
- nigms
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
Single-Component Multilayered Self-Assembling Protein Nanoparticles Presenting Glycan-Trimmed Uncleaved Prefusion Optimized Envelope Trimers as HIV-1 Vaccine Candidates
Zhang, Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082823/
Researchers are interested in engineering protein nanoparticles to mimic virus-like particles for an HIV-1 vaccine. In this study, researchers explored a strategy that combines HIV envelope glycoprotein (Env) stabilization, nanoparticle display, and glycan trimming. They designed a panel of constructs for biochemical, biophysical, and structural characterization. Using female mice, female rabbits, and rhesus macaques of both sexes, they demonstrated that glycan trimming increases the frequency of vaccine responders and steers antibody responses away from immunodominant glycan holes and glycan patches. This work offers a potential strategy for overcoming the challenges posed by the Env glycan shield in vaccine development. Supported by ORIP (P51OD011133, P51OD011104, U42OD010442) and NIAID.
Proteomic Profiling of Extracellular Vesicles Isolated From Plasma and Peritoneal Exudate in Mice Induced by Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP)
Reyes et al., Toxins (Basel). 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467150/
Toxins in viperid snakes can induce clinically heterogeneous effects, but most viper venoms are composed of only 10 main protein families. Researchers investigated the proteome expression profile of extracellular vesicles isolated from biofluid samples from male and female mice after injection with crude venom and cysteine-rich secretory proteins. They reported changes in the expression of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. This work could be applied in future efforts for early detection and assessment of local effects. Supported by ORIP (P40OD010960), NIGMS, and NHLBI.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
American Alligators Are Capable of West Nile Virus Amplification, Mosquito Infection and Transmission
Byas et al., Virology. 2022.
https://www.doi.org/10.1016/j.virol.2022.01.009
West Nile virus (WNV) overwintering is poorly understood and likely multifactorial. Interest in alligators as a potential amplifying host arose when it was shown that they develop viremias theoretically sufficient to infect mosquitoes. Researchers examined potential ways in which alligators may contribute to the natural ecology of WNV. They experimentally demonstrated that alligators are capable of WNV amplification with subsequent mosquito infection and transmission capability, that WNV-infected mosquitoes readily infect alligators, and that water can serve as a source of infection for alligators but does not easily serve as an intermediate means for transmission between birds and alligators. These findings indicate potential mechanisms for maintenance of WNV outside of the primary bird–mosquito transmission cycle. Supported by ORIP (T32OD010437) and NIAID.
Expression, Activity, and Regulation of Phosphorylating Enzymes in Tissues and Cells Relevant to HIV-1 Sexual Transmission
Hu et al., AIDS Research and Human Retroviruses. 2022.
https://www.doi.org/10.1089/AID.2020.0250
Phosphorylating enzymes (PEs) are critical for activating nucleoside/nucleotide reverse transcriptase inhibitors (e.g., tenofovir [TFV]), but limited information is available about the expression of PEs in the female genital tract and colon tissue. Investigators compared the mRNA expression of seven PEs involved in metabolism of TFV in cervicovaginal and colon tissues. This work involved human, pigtailed macaque, and rabbit tissues; human cervicovaginal epithelial cell lines; T cell lines; and primary CD4+ T cells. Taken together, this study suggests that TFV activation differs among immune cells and local tissues under varying conditions. Additionally, the variability of PE expression levels found across species provides critical information to assist with the interpretation of data obtained using these animal models. Supported by ORIP (P51OD010425) and NIAID.