Selected Grantee Publications
- Clear All
- 11 results found
- Nonhuman Primate Models
- 2025
- 2020
Small-Diameter Artery Grafts Engineered from Pluripotent Stem Cells Maintain 100% Patency in an Allogeneic Rhesus Macaque Model
Zhang et al., Cell Reports Medicine. 2025.
https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(25)00075-8
Globally, the leading cause of death is occlusive arterial disease, but surgical revascularization improves patient prognosis and reduces mortality. Vascular grafts often are needed in coronary bypass surgery for surgical revascularization. However, the clinically approved option for small-diameter revascularization is autologous vascular grafts, which require invasive harvesting methods, and many patients lack suitable vessels. Researchers developed a novel method for graft development using arterial endothelial cells (AECs), derived from pluripotent stem cells (PSCs), on expanded polytetrafluoroethylene using specific adhesion molecules. This study used a 6- to 13-year-old male rhesus macaque arterial interposition grafting model. The major histocompatibility complex mismatched wild-type (MHC-WT) AEC grafts were successful when implanted in rhesus macaques and attracted host cells to the engraftment, leading to 100% patency for 6 months. The results highlight a novel strategy for generating artery grafts from PSC-derived MHC-WT AECs that overcomes current challenges in graft development and may have future clinical applications. Supported by ORIP (P51OD011106, S10OD023526), NCI, and NHLBI.
Early Results of an Infant Model of Orthotopic Cardiac Xenotransplantation
Mitchell et al., Journal of Heart and Lung Transplantation. 2025.
https://pubmed.ncbi.nlm.nih.gov/39778609
This study evaluated the potential of genetically engineered pig hearts for human pediatric heart failure patients, with 11 infantile pig heart transplants performed in size-matched infant baboons (Papio anubis) (sex not specified). All grafts supported normal cardiac functions post-operatively, and six animals survived beyond 3 months. While early cardiac function was not a limiting factor for survival, systemic inflammation led to pulmonary edema and pleural effusions, which impeded long-term outcomes. These findings highlight the feasibility of cardiac xenotransplantation in infants and underscore the need for targeted therapies to manage inflammation and improve survival. Supported by ORIP (P40OD024628) and NHLBI.
Liver-Specific Transgenic Expression of Human NTCP In Rhesus Macaques Confers HBV Susceptibility on Primary Hepatocytes
Rust et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937851
This study establishes the first transgenic nonhuman primate model for hepatitis B virus (HBV). Male and female rhesus macaques were engineered to express the human HBV receptor, NTCP (hNTCP), specifically in the liver. Researchers used PiggyBac transposon technology to introduce a liver-specific NTCP transgene into embryos, which were then implanted into surrogate females. The resulting offspring expressed hNTCP in hepatocytes and demonstrated high susceptibility to HBV infection. This model overcomes the species-specific limitations of HBV research, providing a powerful tool for studying HBV biology and evaluating HBV treatments in a clinically relevant model system. Supported by ORIP (P51OD011092), NIDA, and NIAID.
Suppression of Viral Rebound by a Rev-Dependent Lentiviral Particle in SIV-Infected Rhesus Macaques
Hetrick et al., Gene Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39025983/
Viral reservoirs are a current major barrier that prevents an effective cure for patients with HIV. Antiretroviral therapy (ART) effectively suppresses viral replication, but ART cessation leads to viral rebound due to the presence of viral reservoirs. Researchers conducted in vivo testing of simian immunodeficiency virus (SIV) Rev-dependent vectors in SIVmac239-infected male and female Indian rhesus macaques, 3–6 years of age, to target viral reservoirs. Treatment with the SIV Rev-dependent vector reduced viral rebound and produced neutralizing antibodies following ART cessation. These results indicate the potential to self-control plasma viremia through a neutralizing antibody-based mechanism elicited by administration of Rev-dependent vectors. This research could guide future studies focused on investigating multiple vector injections and quantifying cell-mediated immune responses. Supported by ORIP (P51OD011104, P40OD028116), NIAID, and NIMH.
Pre-Challenge Gut Microbial Signature Predicts RhCMV/SIV Vaccine Efficacy in Rhesus Macaques
Brochu et al., Microbiology Spectrum. 2025.
https://journals.asm.org/doi/10.1128/spectrum.01285-24
Rhesus cytomegalovirus–based simian immunodeficiency virus (RhCMV/SIV) vaccines provide protection against SIV challenge in approximately 60% of vaccinated rhesus macaques. This study assessed the role that gut microbiota play in SIV vaccine efficacy by analyzing the microbiomes of rhesus macaques before and after immunization using novel compositional data analysis techniques and machine-learning strategies. Researchers identified a gut microbial signature that predicted vaccine protection outcomes and correlated with early biomarker changes in the blood (i.e., host immune response to vaccination). This study indicates that the gut microbiome might play a role in vaccine-induced immunity. Supported by ORIP (P51OD011092).
Responses to Acute Infection with SARS-CoV-2 in the Lungs of Rhesus Macaques, Baboons and Marmosets
Singh et al., Nature Microbiology. 2020.
https://www.nature.com/articles/s41564-020-00841-4
Investigators compared acute SARS-CoV-2 infection in young and old rhesus macaques and baboons. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies; both age groups recovered within 2 weeks. Baboons had prolonged viral RNA shedding and more lung inflammation compared with macaques; inflammation in bronchoalveolar lavage was increased in old versus young baboons. Macaques developed T-cell memory responses and bystander cytokine production. Old macaques had lower titers of SARS-CoV-2-specific IgG antibody levels compared with young macaques. The results indicate macaques and baboons experience acute respiratory distress that recapitulates the progression of COVID-19 in humans. Supported by ORIP (P51OD111033 and U42OD010442) and NIAID.
Sequence Diversity Analyses of an Improved Rhesus Macaque Genome Enhance its Biomedical Utility
Warren et al., Science. 2020.
https://science.sciencemag.org/content/370/6523/eabc6617
Investigators sequenced and assembled an Indian-origin female rhesus macaque (RM) genome using a multiplatform genomics approach that included long-read sequencing, extensive manual curation, and experimental validation to generate a new comprehensive annotated reference genome. As a result, 99.7% of the gaps in the earlier draft genome are now closed, and more than 99% of the genes are represented. Whole-genome sequencing of 853 RMs of both sexes identified 85.7 million single-nucleotide variants and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay. The improved assembly of segmental duplications, new lineage-specific genes and expanded gene families provide a framework for developing noninvasive NHP models for human disease, as well as studies of genetic variation and phenotypic consequences. Supported by ORIP (P51OD011106, P51OD011107, P51OD011132, P51OD011104, U42OD024282, U42OD010568, R24OD011173, R24OD021324, R24OD010962), NHGRI, NIMH, NHLBI, and NIGMS.
The Immune Landscape in Tuberculosis Reveals Populations Linked to Disease and Latency
Esaulova et al., Cell Host Microbe. 2020.
https://pubmed.ncbi.nlm.nih.gov/33340449/
Mycobacterium tuberculosis infection of adult rhesus macaques (RMs), predominantly males (81%), recapitulates both latent (LTBI) and active pulmonary TB (PTB) observed in humans. The immune characterization in lungs of RMs with PTB exhibited an influx of plasmacytoid dendritic cells, an interferon-responsive macrophage population, and activated T cell responses. In contrast, a CD27+ natural killer (NK) cell subset accumulated in the lungs of RMs with LTBI. This NK cell population was also detected in the circulation of humans with LTBI. This characterization of lung immune cells enhances our understanding of TB immunopathogenesis and provides potential targets for therapies and vaccines for TB control. Supported by ORIP (P51OD011104 and P51OD011133), NHLBI, and NIAID.
Infant Isoflurane Exposure Affects Social Behaviours, but Does Not Impair Specific Cognitive Domains in Juvenile Non-Human Primates
Neudecker et al., British Journal of Anaesthesia. 2020.
https://www.sciencedirect.com/science/article/pii/S0007091220308503
Researchers investigated the impact of extended (5 hours) isoflurane anesthetic exposure (1-3 exposures) of rhesus macaque (RM) infants of both sexes on cognitive testing and behavioral assessments. Cognitive function did not differ among groups; however, compared to controls, RMs exposed three times during infancy exhibited less close social behavior. One isoflurane exposure resulted in increased anxiety-related behaviors and more inhibition towards novel objects. These findings are consistent with behavioral alterations observed in social settings of human clinical studies. Supported by ORIP (P51OD011092).
Antiretroviral Therapy Does Not Reduce Tuberculosis Reactivation in a Tuberculosis-HIV Coinfection Model
Ganatra et al., Journal of Clinical Investigation. 2020.
https://www.jci.org/articles/view/136502
Despite treatment of HIV with antiretroviral therapy (ART), the risk of tuberculosis (TB) reactivation is higher in HIV-infected than HIV-uninfected persons. Researchers used Mycobacterium tuberculosis/SIV-coinfected rhesus macaques to model the impact of ART on TB reactivation due to HIV-induced immunosuppression. ART significantly reduced viral loads and increased CD4+ T-cell counts in blood, spleen, and bronchoalveolar lavage samples, but it did not reduce the risk of SIV-induced TB reactivation during the early phase of treatment. This study offers a translational model for the investigation of TB/SIV coinfection and the evaluation of treatment regimens to prevent TB reactivation in HIV-infected individuals. Supported by ORIP (P51OD011133, P51OD011132) and NIAID.