Selected Grantee Publications
- Clear All
- 11 results found
- Nonhuman Primate Models
- Neurological
- 2022
Sociability in a Non-Captive Macaque Population Is Associated with Beneficial Gut Bacteria
Johnson et al., Frontiers in Microbiology. 2022.
https://www.doi.org/10.3389/fmicb.2022.1032495
Social connections are essential for good health and well-being in social animals, such as humans and other primates. Increasingly, evidence suggests that the gut microbiome—through the so-called “gut–brain axis”—plays a key role in physical and mental health and that bacteria can be transmitted socially (e.g., through touch). Here, the authors explore behavioral variation in non‑captive rhesus macaques of both sexes with respect to the abundance of specific bacterial genera. Their results indicate that microorganisms whose abundance varies with individual social behavior also have functional links to host immune status. Overall, these findings highlight the connections between social behavior, microbiome composition, and health in an animal population. Supported by ORIP (P40OD012217) and NIMH.
SARS-CoV-2 Infects Neurons and Induces Neuroinflammation in a Non-Human Primate Model of COVID-19
Beckman et al., Cell Reports. 2022.
https://www.doi.org/10.1016/j.celrep.2022.111573
SARS-CoV-2 causes brain fog and other neurological complications in some patients. It has been unclear whether SARS-CoV-2 infects the brain directly or whether central nervous system sequelae result from systemic inflammatory responses triggered in the periphery. Using a rhesus macaque model, researchers detected SARS-CoV-2 in the olfactory cortex and interconnected regions 7 days after infection, demonstrating that the virus enters the brain through the olfactory nerve. Neuroinflammation and neuronal damage were more severe in elderly monkeys with type 2 diabetes. The researchers found that in aged monkeys, SARS-CoV-2 traveled farther along nerve pathways to regions associated with Alzheimer's disease. Supported by ORIP (P51OD011107) and NIA.
Neuroinflammatory Transcriptional Programs Induced in Rhesus Pre‑Frontal Cortex White Matter During Acute SHIV Infection
Hawes et al., Journal of Neuroinflammation. 2022.
https://www.doi.org/10.1186/s12974-022-02610-y
Neuroinflammation has evolved as a protective immune response within the central nervous system (CNS), but chronic neuroinflammation leads to oxidative stress, cellular damage, and neurodegeneration. People living with HIV are at increased risk for age-related neurodegenerative diseases. Using rhesus macaques of both sexes, the researchers characterized the molecular underpinnings of acute neuroinflammation following simian–human immunodeficiency virus (SHIV) infection. Viral entry and integration within the CNS demonstrated vulnerabilities of key cognitive and motor function brain regions during the acute phase of infection. SHIV-induced transcriptional alterations also were observed. These findings indicate the presence of pervasive immune surveillance at homeostasis and reveal key perturbations during infection. Supported by ORIP (S10OD010786, K01OD023034) and NIAID.
Maternal Western-Style Diet Reduces Social Engagement and Increases Idiosyncratic Behavior in Japanese Macaque Offspring
Mitchell et al., Brain, Behavior, and Immunity. 2022.
https://www.doi.org/10.1016/j.bbi.2022.07.004
Evidence points to an association between maternal obesity and risk of early-emerging neurodevelopmental disorders in offspring, yet few preclinical studies have tested for associations between maternal Western-style diet (mWSD) and offspring behavior. Using Japanese macaques, researchers found that mWSD offspring exhibited less proximity to peers and initiated fewer affiliative social behaviors. These outcomes appear to be mediated by increased maternal interleukin-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin. These findings suggest specific prevention and intervention targets for early-emerging neurodevelopmental disorder in humans. Supported by ORIP (P51OD011092), NIMH, and NICHD.
Molecular and Cellular Evolution of the Primate Dorsolateral Prefrontal Cortex
Ma et al., Science. 2022.
https://www.doi.org/10.1126/science.abo7257
The dorsolateral prefrontal cortex (dlPFC) exists only in primates, lies at the center of high-order cognition, and is a locus of pathology underlying many neuropsychiatric diseases. The investigators generated single-nucleus transcriptome data profiling more than 600,000 nuclei from the dlPFC of adult humans, chimpanzees, rhesus macaques, and common marmosets of both sexes. Postmortem human samples were obtained from tissue donors. The investigators’ analyses delineated dlPFC cell-type homology and transcriptomic conservation across species and identified species divergence at the molecular and cellular levels, as well as potential epigenomic mechanisms underlying these differences. Expression patterns of more than 900 genes associated with brain disorders revealed a variety of conserved, divergent, and group-specific patterns. The resulting data resource will help to vertically integrate marmoset and macaque models with human-focused efforts to develop treatments for neuropsychiatric conditions. Supported by ORIP (P51OD011133), NIA, NICHD, NIDA, NIGMS, NHGRI, NIMH, and NINDS.
Parallel Processing, Hierarchical Transformations, and Sensorimotor Associations along the “Where” Pathway
Doudlah et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.78712
Visually guided behaviors require the brain to transform ambiguous retinal images into object-level spatial representations and map those representations to motor responses. These capabilities are supported by the dorsal “where” pathway in the brain, but the specific contributions of areas along this pathway have remained elusive. Using a rhesus macaque model, researchers compared neuronal activity in two areas along the “where” pathway that bridge the parieto-occipital junction: intermediate visual area V3A and the caudal intraparietal (CIP) area. Neuronal activity was recorded while the animals made perceptual decisions based on judging the tilt of 3D visual patterns. The investigators found that CIP shows higher-order spatial representations and more choice-correlated responses, which support a V3A-to-CIP hierarchy. The researchers also discovered modulation of V3A activity by extraretinal factors, suggesting that V3A might be better characterized as contributing to higher-order behavioral functions rather than low-level visual feature processing. Supported by ORIP (P51OD011106), NEI, NICHD, and NINDS.
Neuroprotective Effects of Electrical Stimulation Following Ischemic Stroke in Non-Human Primates
Zhou et al., Institute of Electrical and Electronics Engineers. 2022.
https://www.doi.org/10.1109/EMBC48229.2022.9871335
Using rhesus macaques of both sexes, researchers identified a novel treatment for ischemic stroke, which occurs when brain cells die due to lack of oxygen. The treatment consisted of applying 60 minutes of electrical brain stimulation shortly after the stroke. The animals that received electrical stimulation had less brain damage, fewer cell deaths, and more protective neural activity patterns than the monkeys that did not receive electrical stimulation. Future work can determine whether this stimulation can be applied noninvasively, as well as how to improve the electrical stimulation patterns to optimize health outcomes for stroke patients. Supported by ORIP (P51OD010425) and NINDS.
Adverse Biobehavioral Effects in Infants Resulting from Pregnant Rhesus Macaques’ Exposure to Wildfire Smoke
Capitanio et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-29436-9
Exposure to wildfire smoke (WFS) is a growing health concern as wildfires increase in number and size due to climate change. Researchers found that developing rhesus monkeys exposed to WFS from the Camp Fire in California (November 2018) during the first third of gestation exhibited greater inflammation, blunted cortisol, more passive behavior, and memory impairment compared to animals conceived after smoke had dissipated. Analysis of a historical control cohort did not support the alternative hypothesis that conception timing alone explained the results. These findings suggest that WFS may have a teratogenic effect on neural development in the primate fetus. Supported by ORIP (P51OD011107, R24OD010962) and NIEHS.
A Potent Myeloid Response Is Rapidly Activated in the Lungs of Premature Rhesus Macaques Exposed to Intra-Uterine Inflammation
Jackson et al., Mucosal Immunology. 2022.
https://www.doi.org/10.1038/s41385-022-00495-x
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which can lead to neonatal mortality, sepsis, respiratory disease, and neurodevelopmental problem. Researchers used rhesus macaques to comprehensively describe HCA-induced fetal mucosal immune responses and delineate the individual roles of IL-1β and TNFα in HCA-induced fetal pathology. Their data indicate that the fetal innate immune system can mount a rapid, multifaceted pulmonary immune response to in utero exposure to inflammation. Taken together, this work provides mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlights the therapeutic potential of inflammatory blockade in the fetus. Supported by ORIP (P51OD011107), NIEHS, NIDDK, NHLBI, and NICHD.
Neuroinflammatory Profiling in SIV-Infected Chinese-Origin Rhesus Macaques on Antiretroviral Therapy
Solis-Leal et al., Viruses. 2022.
https://www.doi.org/10.3390/v14010139
The central nervous system (CNS) HIV reservoir contributes to residual neuroimmune activation, which can lead to HIV-associated neurocognitive disorder. Researchers characterized the expression of signaling molecules associated with inflammation in plasma, cerebrospinal fluid, and basal ganglia of Chinese-origin rhesus macaques (sex not specified) with simian immunodeficiency virus (SIV). They reported a correlation between levels of CCL2 in plasma and cerebrospinal fluid, suggesting that researchers could infer the degree of CNS inflammation by testing CCL2 levels in peripheral blood. Overall, these findings provide insight into neuroinflammation and signaling associated with HIV persistence in the CNS. Supported by ORIP (P51OD011104, P51OD011133), NIMH, and NINDS.