Selected Grantee Publications
- Clear All
- 179 results found
- Nonhuman Primate Models
- Immunology
Dual Blockade of IL-10 and PD-1 Leads to Control of SIV Viral Rebound Following Analytical Treatment Interruption
Pereira Ribeiro et al., Nature Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39266691
Pereira Ribeiro et al. tested a hypothesis that blockading two immune molecules, IL-10 and PD‑1, following treatment interruption could help control viral rebound in antiretroviral therapy (ART)–treated rhesus macaques infected with simian immunodeficiency virus (SIV), a nonhuman analogue of HIV. When measured at 24 weeks following treatment interruption, durable control of viral rebound was seen in 9 of 10 combo-treated macaques. The investigators also found that they could predict the control of viral rebound based on the induction of inflammatory cytokines, proliferation of effector CD8+ T cells, and reduced expression of BCL-2 in CD4+ T cells prior to treatment interruption. These results could provide a way to achieve long-lasting control of HIV infection after discontinuing ART. Supported by ORIP (U42OD011023, P51OD011132), NCI, and NIAID.
Immunization With Germ Line–Targeting SOSIP Trimers Elicits Broadly Neutralizing Antibody Precursors in Infant Macaques
Nelson et al., Science Immunology. 2024.
https://www.science.org/doi/10.1126/sciimmunol.adm7097
Broadly neutralizing antibodies (bnAbs) offer a promising approach for preventing and treating HIV infection, but the ability to induce bnAbs at protective levels has been a challenge. Previous studies have shown that children living with HIV develop bnAbs more efficiently than adults living with HIV. This study evaluated the ability of a stabilized form of Env—SOSIP—to elicit an immune response in young rhesus macaques. The SOSIP protein was engineered to activate naïve B cells expressing germline antibody precursors. Infant macaques were immunized with wild-type SOSIP (SOSIP) or germline-targeting SOSIP (GT1.1), followed by a SOSIP booster. Both SOSIP and GT1.1 induced a protective immune response, but only GT1.1 induced VRC01-like bnAb precursors—antibodies that bind Env’s CD4-binding site and provide the broadest possible protection. These results represent a possible childhood HIV immunization strategy that would elicit protective immunity before sexual debut. Supported by ORIP (P51OD011107), NCI, and NIAID.
Anti–PD-1 Chimeric Antigen Receptor T Cells Efficiently Target SIV-Infected CD4+ T Cells in Germinal Centers
Eichholtz et al., The Journal of Clinical Investigation. 2024.
https://pubmed.ncbi.nlm.nih.gov/38557496/
Researchers conducted adoptive transfer of anti–programmed cell death protein 1 (PD-1) chimeric antigen receptor (CAR) T cells in simian immunodeficiency virus (SIV)–infected rhesus macaques of both sexes on antiretroviral therapy (ART). In some macaques, anti–PD-1 CAR T cells expanded and persisted concomitant with the depletion of PD-1+ memory T cells—including lymph node CD4+ follicular helper T cells—associated with depletion of SIV RNA from the germinal center. Following CAR T infusion and ART interruption, SIV replication increased in extrafollicular portions of lymph nodes, plasma viremia was higher, and disease progression accelerated, indicating that anti–PD-1 CAR T cells depleted PD-1+ T cells and eradicated SIV from this immunological sanctuary. Supported by ORIP (U42OD011123, U42OD010426, P51OD010425, P51OD011092), NCI, NIAID, and NIDDK.
Early Antiretroviral Therapy in SIV-Infected Rhesus Macaques Reveals a Multiphasic, Saturable Dynamic Accumulation of the Rebound Competent Viral Reservoir
Keele et al., PLOS Pathogens. 2024.
https://pubmed.ncbi.nlm.nih.gov/38593120/
Researchers studied the dynamics of rebound-competent viral reservoir (RCVR) establishment in male and female rhesus macaques and assessed viral time-to-rebound and reactivation rates resulting from the discontinuation of antiretroviral therapy (ART) after 1 year. All rhesus macaques rebounded between 7 and 16 days after ART, with 3 to 28 rebound lineages. Calculated reactivation rates per pre-ART plasma viral load were consistent with multiphasic establishment and near saturation of the RCVR within 2 weeks after infection. The data highlight the heterogeneity of the RCVR between rhesus macaques, the stochastic establishment of the very early RCVR, and the saturability of the RCVR prior to peak viral infection. Supported by ORIP (P51OD011092), NCI, and NIAID.
RNA Landscapes of Brain and Brain-Derived Extracellular Vesicles in Simian Immunodeficiency Virus Infection and Central Nervous System Pathology
Huang et al., The Journal of Infectious Diseases. 2024.
https://pubmed.ncbi.nlm.nih.gov/38079216/
Brain tissue–derived extracellular vesicles (bdEVs) act locally in the central nervous system (CNS) and may indicate molecular mechanisms in HIV CNS pathology. Using brain homogenate (BH) and bdEVs from male pigtailed macaques, researchers identified dysregulated RNAs in acute and chronic infection. Most dysregulated messenger RNAs (mRNAs) in bdEVs reflected dysregulation in source BH, and these mRNAs are disproportionately involved in inflammation and immune responses. Additionally, several circular RNAs were differentially abundant in source tissue and might be responsible for specific differences in small RNA levels in bdEVs during simian immunodeficiency virus (SIV) infection. This RNA profiling shows potential regulatory networks in SIV infection and SIV-related CNS pathology. Supported by ORIP (U42OD013117), NCI, NIAID, NIDA, NIMH, and NINDS.
Engineered IgM and IgG Cleaving Enzymes for Mitigating Antibody Neutralization and Complement Activation in AAV Gene Transfer
Smith et al., Molecular Therapy. 2024.
https://www.sciencedirect.com/science/article/pii/S1525001624003058?via%3Dihub=
Recombinant adeno-associated viral (AAV) vectors have emerged as the leading platform for therapeutic gene transfer, but systemic dosing of AAV vectors poses potential risk of adverse side effects, including complement activation triggered by anti-capsid immunity. In this study, investigators discovered an IgM cleaving enzyme (IceM) that degrades human IgM, a key trigger in the anti-AAV immune cascade. They engineered a fusion enzyme (IceMG) with dual proteolytic activity against human IgM and IgG. Antisera from animals treated with IceMG show decreased ability to neutralize AAV and activate complement. These studies have implications for improving the safety of AAV gene therapies and offer broader applications, including for organ transplantation and autoimmune diseases. Supported by ORIP (P51OD011107, U42OD027094), NHLBI, and NIAID.
Vaccination Induces Broadly Neutralizing Antibody Precursors to HIV gp41
Schiffner et al., Nature Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38816615
Primary immunogens that induce rare broadly neutralizing antibody (bnAb) precursor B cells are needed to develop vaccines against viruses of high antigenic diversity. 10E8-class bnAbs must possess a long, heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. Researchers developed germline-targeting epitope scaffolds with an affinity for 10E8-class precursors that exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens. Protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. This study showed that germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features. Supported by ORIP (P51OD011132, U42OD011023), NIAID, and NIGMS.
Natural Killer–Like B Cells Are a Distinct but Infrequent Innate Immune Cell Subset Modulated by SIV Infection of Rhesus Macaques
Manickam et al., PLOS Pathogens. 2024.
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1012223
Natural killer–like B (NKB) cells express both natural killer (NK) and B cell receptors. Intracellular signaling proteins and trafficking markers were expressed differentially on naive NKB cells. CD20+ NKG2A/C+ NKB cells were identified in organs and lymph nodes of naive rhesus macaques (RMs). Single-cell RNA sequencing (scRNAseq) of sorted NKB cells confirmed that NKB cells are unique, and transcriptomic analysis of naive splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. Expanded NKB frequencies were observed in RM gut and buccal mucosa after simian immunodeficiency virus (SIV) infection, and mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes. NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings. Supported by ORIP (P51OD011132, S10OD026799) and NIAID.
Physiologically Based Pharmacokinetic Model Validated to Enable Predictions of Multiple Drugs in a Long-Acting Drug-Combination Nano-Particles (DcNP): Confirmation With 3 HIV Drugs, Lopinavir, Ritonavir, and Tenofovir in DcNP Products
Perazzolo et al., Journal of Pharmaceutical Sciences. 2024.
https://jpharmsci.org/article/S0022-3549(24)00060-1/fulltext
Drug-combination nanoparticles synchronize delivery of multiple drugs in a single, long-acting, targeted dose. Two distinct classes of long-acting injectable products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site, and Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access. This review used data from three nonhuman primate studies, consisting of nine pharmacokinetic data sets, to support clinical development of Class II products. Eight of nine models passed validation, and the drug–drug interaction identified in the ninth model can be accounted for in the final model. Supported by ORIP (P51OD010425, U42OD011123), NIAID, and NHLBI.
CD8+ T Cell Targeting of Tumor Antigens Presented by HLA-E
Iyer, Science Advances. 2024.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086602/
Researchers have hypothesized that human leukocyte antigen-E (HLA-E)–positive cancer cells could be targeted by HLA-E–restricted CD8+ T cells. In this study, the authors assessed whether major histocompatibility complex E (MHC-E) expression by cancer cells can be targeted for MHC-E–restricted T cell control. Using male rhesus macaques, they found that a cytomegalovirus can be used as a vector to generate specific immune cells that can target cancer cells. The authors conclude that targeting HLA-E with restricted, specific CD8+ T cells could offer a new approach for immunotherapy of prostate cancer. Overall, this study supports the concept of a cancer vaccine. Supported by ORIP (P51OD011092) and NIAID.

