Selected Grantee Publications
- Clear All
- 9 results found
- Nonhuman Primate Models
- Microbiome
Natural Killer–Like B Cells Are a Distinct but Infrequent Innate Immune Cell Subset Modulated by SIV Infection of Rhesus Macaques
Manickam et al., PLOS Pathogens. 2024.
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1012223
Natural killer–like B (NKB) cells express both natural killer (NK) and B cell receptors. Intracellular signaling proteins and trafficking markers were expressed differentially on naive NKB cells. CD20+ NKG2A/C+ NKB cells were identified in organs and lymph nodes of naive rhesus macaques (RMs). Single-cell RNA sequencing (scRNAseq) of sorted NKB cells confirmed that NKB cells are unique, and transcriptomic analysis of naive splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. Expanded NKB frequencies were observed in RM gut and buccal mucosa after simian immunodeficiency virus (SIV) infection, and mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes. NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings. Supported by ORIP (P51OD011132, S10OD026799) and NIAID.
Antibiotic-Induced Gut Dysbiosis Elicits Gut–Brain–Axis Relevant Multi-Omic Signatures and Behavioral and Neuroendocrine Changes in a Nonhuman Primate Model
Hayer et al., Gut Microbes. 2024.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826635/
Gut microbiome–mammalian cell interactions influence the development of metabolic, immune-mediated, and neuropsychiatric disorders. Dysbiosis of the gut microbiome has been linked to behavioral characteristics in previous nonhuman primate (NHP) studies, but additional studies using NHPs are necessary to understand microbiota–gut–brain communication. The authors sought to evaluate whether antibiotic-induced gut dysbiosis can elicit changes in gut metabolites and behavior indicative of gut–brain axis disruption in common marmosets of both sexes. For the first time in an NHP model, this study demonstrated that antibiotics induce gut dysbiosis, alter gut metabolites relevant to gut–brain communication, affect neuroendocrine responses in response to stressful stimuli, and change social behavior. Supported by ORIP (K01OD030514), NCI, and NIGMS.
Sociability in a Non-Captive Macaque Population Is Associated with Beneficial Gut Bacteria
Johnson et al., Frontiers in Microbiology. 2022.
https://www.doi.org/10.3389/fmicb.2022.1032495
Social connections are essential for good health and well-being in social animals, such as humans and other primates. Increasingly, evidence suggests that the gut microbiome—through the so-called “gut–brain axis”—plays a key role in physical and mental health and that bacteria can be transmitted socially (e.g., through touch). Here, the authors explore behavioral variation in non‑captive rhesus macaques of both sexes with respect to the abundance of specific bacterial genera. Their results indicate that microorganisms whose abundance varies with individual social behavior also have functional links to host immune status. Overall, these findings highlight the connections between social behavior, microbiome composition, and health in an animal population. Supported by ORIP (P40OD012217) and NIMH.
Large Comparative Analyses of Primate Body Site Microbiomes Indicate That the Oral Microbiome Is Unique Among All Body Sites and Conserved Among Nonhuman Primates
Asangba et al., Microbiology Spectrum. 2022.
https://www.doi.org/10.1128/spectrum.01643-21
Microbiomes are critical to host health and disease, but large gaps remain in the understanding of the determinants, coevolution, and variation of microbiomes across body sites and host species. Thus, researchers conducted the largest comparative study of primate microbiomes to date by investigating microbiome community composition at eight distinct body sites in 17 host species. They found that the oral microbiome is unique in exhibiting notable similarity across primate species while being distinct from the microbiomes of all other body sites and host species. This finding suggests conserved oral microbial niche specialization, despite substantial dietary and phylogenetic differences among primates. Supported by ORIP (P51OD010425, P51OD011107, P40OD010965, R01OD010980), NIA, NIAID, and NICHD.
The Early Life Microbiota Mediates Maternal Effects on Offspring Growth in a Nonhuman Primate
Petrullo et al., iScience. 2022.
https://www.doi.org/10.1016/j.isci.2022.103948
Mammalian mothers influence offspring development by providing nutrients and other bioactive compounds through the placenta or milk. A relatively unexplored mechanism for maternal effects is vertical transmission of bacteria through milk to the infant gut. Infants that receive more glycan-utilizing bacteria from milk might better exploit oligosaccharides, which could improve nutrition and accelerate growth. Researchers found that first-time vervet mothers harbored a milk bacterial community that was less diverse due to the dominance of Bacteroides fragilis, a glycan-utilizing bacteria. These low-parity females had infants that grew faster, suggesting that vertical transmission of bacteria via milk can mediate maternal effects on growth. These results indicate non-nutritive milk constituents play important roles in development. Commercial milk formula might need to be improved or supplemented to better support infant health. Supported by ORIP (P40OD010965) and NCATS.
Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome
McDew-White et al., EBioMedicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34954656/
HIV-associated periodontal disease (PD) affects people living with HIV (PLWH) on combination anti-retroviral therapy (cART). Researchers used a systems biology approach to investigate the molecular, metabolome, and microbiome changes underlying PD and its modulation by phytocannabinoids (Δ9-THC) in rhesus macaques. Δ9-THC reduced IDO1 protein expression. The findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis, and potentially metabolic disease in PLWH on cART. Supported by ORIP (P51OD011104, P51OD011133, U42OD010442), NIAID, NIDA, NIDDK, NIDCR, and NIMH.
IL-21 and IFNα Therapy Rescues Terminally Differentiated NK Cells and Limits SIV Reservoir in ART-Treated Macaques
Harper et al., Nature Communications. 2021.
https://doi.org/10.1038/s41467-021-23189-7
Nonpathogenic simian immunodeficiency virus (SIV) infections in natural hosts, such as vervet monkeys, are characterized by a lack of gut microbial translocation, robust secondary lymphoid natural killer cell responses, and limited SIV dissemination in lymph node B-cell follicles. Using antiretroviral therapy-treated, SIV-infected rhesus monkeys—a pathogenic model—researchers showed that interleukin-21 and interferon alpha therapy generate terminally differentiated blood natural killer cells with potent human leukocyte antigen-E-restricted activity in response to SIV envelope peptides. The correlated reduction of replication-competent SIV in lymph node demonstrates that vervet-like natural killer cell differentiation can be rescued in rhesus monkeys to promote viral clearance. Supported by ORIP (P51OD011132, R24OD010947), NIAID, and NCI.
Tract Pathogen-Mediated Inflammation Through Development of Multimodal Treatment Regimen and Its Impact on SIV Acquisition in Rhesus Macaques
Bochart et al., PLOS Pathogens. 2021.
https://doi.org/10.1371/journal.ppat.1009565
In addition to being premier HIV models, rhesus macaques are models for other infectious diseases and colitis, where background colon health and inflammation may confound results. Starting with the standard specific-pathogen-free (SPF) model, researchers established a gastrointestinal pathogen-free (GPF) colony via multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common endemic pathogens (EPs). This treatment combined with continued pathogen exclusion eliminated common EPs, improved mucosal barriers, and reduced mucosal and systemic inflammation without microbiota disruption. GPF animals challenged with SIV intrarectally demonstrated a more controlled and consistent rate of SIV acquisition, suggesting the value of this model for HIV studies. Supported by ORIP (U42OD023038, P51OD011092), NCI, and NIAID.