Selected Grantee Publications
- Clear All
- 9 results found
- Nonhuman Primate Models
- Women's Health
Placental Gene Therapy in Nonhuman Primates: A Pilot Study of Maternal, Placental, and Fetal Response to Non-Viral, Polymeric Nanoparticle Delivery of IGF1
Wilson et al., Molecular Human Reproduction. 2024.
https://academic.oup.com/molehr/article/30/11/gaae038/7876288#493719584
This study investigates a novel nanoparticle-mediated gene therapy approach for addressing fetal growth restriction (FGR) in pregnant female nonhuman primates. Using polymer-based nanoparticles delivering a human insulin-like growth factor 1 (IGF1) transgene, the therapy targets the placenta via ultrasound-guided injections. Researchers evaluated maternal, placental, and fetal responses by analyzing tissues, immunomodulatory proteins, and hormones (progesterone and estradiol). Findings highlight the potential of IGF1 nanoparticles to correct placental insufficiency by enhancing fetal growth, providing a groundbreaking advancement for in utero treatments. This research supports further exploration of nonviral gene therapies for improving pregnancy outcomes and combating FGR-related complications. Supported by ORIP (P51OD011106) and NICHD.
Effect of Hormone Replacement Therapy on Amyloid Beta (Aβ) Plaque Density in the Rhesus Macaque Amygdala
Appleman et al., Frontiers in Aging Neuroscience. 2024.
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1326747/full
Amyloid beta plaque density is associated with Alzheimer’s disease. In this study, the authors examined its concentration in aged female nonhuman primates’ cerebrospinal fluid, as well as in the amygdala, an area of the brain involved with emotion and memory. They set out to test the hypothesis that estrogen hormone replacement therapy can beneficially affect amygdala Aβ plaque density in “surgically menopausal” females (i.e., aged rhesus macaques that had undergone ovariectomy). Female rhesus macaques that received estrogen replacement therapy showed fewer amyloid plaques than those that did not receive the hormone. This effect was observed regardless of the type of diet that the animals consumed. These findings suggest that hormone replacement might be a helpful treatment to consider for Alzheimer’s disease. Supported by ORIP (P51OD011092, R24OD011895, S10OD025002) and NIA.
Biphasic Decay of Intact SHIV Genomes Following Initiation of Antiretroviral Therapy Complicates Analysis of Interventions Targeting the Reservoir
Kumar et al., PNAS. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614214/
The latent HIV-1 reservoir persists with antiretroviral therapy (ART), and assays for quantifying intact proviruses in nonhuman primate models are needed. Researchers used a simian–human immunodeficiency virus (SHIV) intact proviral DNA assay to describe viral decay during the first year of ART in female rhesus macaques. Their results suggest that intact SHIV genomes in circulating CD4+ T cells undergo biphasic decay during the first year of ART, with a rapid first phase and a slower second phase. These findings can provide insight for future studies using SHIV models, as well as new cure interventions. Supported by ORIP (R01OD011095) and NIAID.
Impaired Placental Hemodynamics and Function in a Non-Human Primate Model of Gestational Protein Restriction
Lo et al., Scientific Reports. 2023.
https://www.nature.com/articles/s41598-023-28051-y
Maternal malnutrition is a global health epidemic that adversely affects fetal outcomes and results in long-term health complications in children. Investigators used a previously developed model in nonhuman primates for gestational protein restriction to study the impact of undernutrition, specifically protein deficiency, on placental function and pregnancy outcomes. The data demonstrate that a 50% protein-restricted diet reduces maternal placental perfusion, decreases fetal oxygen availability, and increases fetal mortality. These alterations in placental hemodynamics could partly explain human growth restriction and stillbirth seen with severe protein restriction in developing countries. Supported by ORIP (P51OD011092) and NICHD.
Maternal Western-Style Diet Reduces Social Engagement and Increases Idiosyncratic Behavior in Japanese Macaque Offspring
Mitchell et al., Brain, Behavior, and Immunity. 2022.
https://www.doi.org/10.1016/j.bbi.2022.07.004
Evidence points to an association between maternal obesity and risk of early-emerging neurodevelopmental disorders in offspring, yet few preclinical studies have tested for associations between maternal Western-style diet (mWSD) and offspring behavior. Using Japanese macaques, researchers found that mWSD offspring exhibited less proximity to peers and initiated fewer affiliative social behaviors. These outcomes appear to be mediated by increased maternal interleukin-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin. These findings suggest specific prevention and intervention targets for early-emerging neurodevelopmental disorder in humans. Supported by ORIP (P51OD011092), NIMH, and NICHD.
Effects of Early Daily Alcohol Exposure on Placental Function and Fetal Growth in a Rhesus Macaque Model
Lo et al., American Journal of Obstetrics and Gynecology. 2021.
https://www.sciencedirect.com/science/article/pii/S0002937821008309?via%3Dihub=
In a rhesus macaque model for chronic prenatal alcohol exposure, daily consumption during early pregnancy significantly diminished placental perfusion at mid to late gestation and significantly decreased the oxygen supply to the fetal vasculature throughout pregnancy. These findings were associated with the presence of microscopic placental infarctions. Although placental adaptations may compensate for early environmental perturbations to fetal growth, placental blood flow and oxygenation were reduced, consistent with the evidence of placental ischemic injury that persisted throughout pregnancy. Supported by ORIP (P51OD011092), NICHD, and NIAAA.
Previous Exposure to Dengue Virus Is Associated with Increased Zika Virus Burden at the Maternal-Fetal Interface in Rhesus Macaques
Crooks et al., PLOS Neglected Tropical Diseases. 2021.
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0009641
Pre-existing immunity to dengue virus (DENV) results in antibody-dependent enhancement (ADE) among DENV serotypes; Zika virus (ZIKV) has homology with DENV suggesting pre-existing DENV immunity may have an impact on ZIKV pathogenesis during pregnancy. In a rhesus macaque model, prior DENV-2 exposure resulted in a higher burden of ZIKV viral RNA in maternal-fetal interface tissues as compared to DENV-naive macaques. However, pre-existing DENV immunity had no detectable impact on ZIKV replication kinetics in maternal plasma; all pregnancies progressed to term without adverse outcomes at delivery. Investigating potential ADE in pregnant women is important as vaccines against DENV and ZIKV are developed. Supported by ORIP (P51OD011106) and NIAID.
Western-Style Diet Consumption Impairs Maternal Insulin Sensitivity and Glucose Metabolism During Pregnancy in a Japanese Macaque Model
Elsakr et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-92464-w
Using a Japanese macaque model, investigators assessed the metabolic effects of obesity and a calorically dense, Western-style diet (WSD; 36.3% fat), either alone or together, on maternal glucose tolerance and insulin levels in dams during pregnancy (n = 95 females followed over multiple pregnancies [n = 273]). With prolonged WSD feeding, multiple diet switches, and/or increasing age and parity, WSD was associated with increasingly higher insulin levels during glucose tolerance testing, indicative of insulin resistance. The results suggest that prolonged or recurrent calorically dense WSD and/or increased parity, rather than obesity per se, drive excess insulin resistance and metabolic dysfunction. Supported by ORIP (P51OD011092), NIDDK and NIMH.
Metabolomics Analysis of Follicular Fluid Coupled With Oocyte Aspiration Reveals Importance of Glucocorticoids in Primate Periovulatory Follicle Competency
Ravisankar et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-85704-6
Assisted reproductive therapy in primates requires ovarian stimulation protocols, which result in multiple heterogeneous oocytes with variable capacity for fertilization, cleavage, and blastocyst formation. Recovered oocytes from rhesus macaque follicles (n=74 follicles) were fertilized in vitro and classified as failed to cleave, cleaved but arrested, or able to form blastocysts. Metabolomics analysis of the follicular fluid identified 60 metabolites that were different among embryo classifications; key was an increase in the intrafollicular ratio of cortisol to cortisone in the blastocyst group, which was associated with translocation of the glucocorticoid receptor, NR3C1. The data suggest a role for NR3C1 in the regulation of follicular processes, such as expansion of cumulus granulosa cells, via paracrine signaling. Supported by ORIP (P51OD011092) and NICHD.