Selected Grantee Publications
- Clear All
- 137 results found
- Nonhuman Primate Models
- Vaccines/Therapeutics
BNT162b Vaccines Protect Rhesus Macaques from SARS-CoV-2
Vogel et al., Nature. 2021.
https://www.nature.com/articles/s41586-021-03275-y
The preclinical development of two BNT162b vaccine candidates, which contain lipid-nanoparticle formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens, was performed in rhesus macaques at the Southwest National Primate Research Center (SNPRC). BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain. BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation. Prime/boost vaccination of rhesus macaques with BNT162b candidates elicits SARS-CoV-2 neutralizing antibody titers that are 8.2 to 18.2 times that of a SARS-CoV-2 convalescent human serum panel. The vaccine candidates protected macaques from SARS-CoV-2 challenge, with BNT162b2 protecting the lower respiratory tract from the presence of viral RNA and with no evidence of disease enhancement. The BNT162b2 vaccine recently received emergency use authorization from FDA and is being administered within the United States. The SNPRC is supported by ORIP (P51OD011103).
Modified Vaccinia Ankara Vector-Based Vaccine Protects Macaques from SARS-CoV-2 Infection, Immune Pathology and Dysfunction in the Lung
Routhu et al., Immunity. 2021.
https://doi.org/10.1016/j.immuni.2021.02.001
Any SARS-CoV-2 vaccine may have limitations such as need for ultracold storage, poor induction of CD8+ T cell response, or lack of cross-reactivity with emerging strains. Thus, multiple vaccines may be needed to bring COVID-19 under control. Using rhesus macaques, researchers showed that a modified vaccinia Ankara (MVA) vector-based SARS-CoV-2 vaccine expressing prefusion-stabilized spike protein induced strong neutralizing antibody and CD8+ T cell responses. The vaccine protected macaques from SARS-CoV-2 infection as well as infection-induced inflammation and B cell abnormalities in the lung. These results are promising considering the excellent safety and performance of MVA vector-based vaccines for other pathogens. Supported by ORIP (P51OD011132, S10OD026799) and NIAID.
Thresholds for Post-Rebound SHIV Control after CCR5 Gene-Edited Autologous Hematopoietic Cell Transplantation
Cardozo-Ojeda et al., eLife. 2021.
https://elifesciences.org/articles/57646
Investigators developed a mathematical model to project the minimum threshold of C-C chemokine receptor type 5 (CCR5) gene-edited cells necessary for a functional cure from HIV. This was based on blood T cell reconstitution and plasma simian-HIV (SHIV) dynamics from SHIV-1157ipd3N4-infected juvenile pig-tailed macaques that underwent autologous transplantation with CCR5 gene editing. The model predicts that viral control can be obtained following analytical treatment interruption (ATI) when: (1) transplanted hematopoietic stem and progenitor cells (HSPCs) are at least fivefold higher than residual endogenous HSPCs after total body irradiation and (2) the fraction of protected HSPCs in the transplant achieves a threshold (76–94%) sufficient to overcome transplantation-dependent loss of SHIV immunity. Under these conditions, if ATI is withheld until transplanted gene-modified cells engraft and reconstitute to a steady state, spontaneous viral control is projected to occur. Supported by ORIP (P51OD010425), NCATS and NIAID.
Increased Proviral DNA in Circulating Cells Correlates With Plasma Viral Rebound in SIV-Infected Rhesus Macaques after Antiretroviral Therapy Interruption
Ziani et al., Journal of Virology. 2021.
https://jvi.asm.org/content/early/2021/01/05/JVI.02064-20
Investigators longitudinally tracked dynamic decay of cell-associated viral RNA/DNA in systemic and lymphoid tissues in SIV-infected rhesus macaques on prolonged combined antiretroviral therapy (cART) to evaluate predictors of viral rebound after treatment cessation. Suppressive cART substantially reduced plasma SIV RNA, cell-associated unspliced, and multiply spliced SIV RNA to undetectable levels, yet viral DNA remained detectable in systemic tissues and lymphoid compartments throughout cART. A rapid increase of integrated proviral DNA in peripheral mononuclear cells was detected once cART was withdrawn, accompanied by the emergence of detectable plasma viral load. The increase of peripheral proviral DNA post cART interruption correlated with the emergence and degree of viral rebound. These results suggest that measuring total viral DNA in SIV infection may be a relatively simple surrogate marker of reservoir size, and may predict viral rebound after treatment interruption, and inform treatment strategies. Supported by ORIP (P51OD011104), NIAID and NICHD.
Antibody-Mediated Depletion of Viral Reservoirs is Limited in SIV-Infected Macaques Treated Early With Antiretroviral Therapy
Swanstrom et al., Journal of Clinical Investigation. 2021.
https://doi.org/10.1172/JCI142421
Virus-specific strategies to target the latent HIV reservoir in individuals on combination antiretroviral therapy (cART) have been limited by inefficient induction of viral protein expression. Researchers used rhesus macaques to investigate an antibody-mediated reservoir targeting strategy, targeting the CD4 molecule rather than a viral protein, to deplete potential viral target cells irrespective of infection status. Despite profound CD4+ T cell depletion in blood and lymph nodes, time to viral rebound following cART cessation was not delayed in anti-CD4 treated animals compared with controls, likely due to the limited antibody-mediated cell depletion that occurred in rectal tissue and lymphoid follicles. Supported by ORIP (R24OD010976), NCI, and NIAID.
The Immune Landscape in Tuberculosis Reveals Populations Linked to Disease and Latency
Esaulova et al., Cell Host Microbe. 2020.
https://pubmed.ncbi.nlm.nih.gov/33340449/
Mycobacterium tuberculosis infection of adult rhesus macaques (RMs), predominantly males (81%), recapitulates both latent (LTBI) and active pulmonary TB (PTB) observed in humans. The immune characterization in lungs of RMs with PTB exhibited an influx of plasmacytoid dendritic cells, an interferon-responsive macrophage population, and activated T cell responses. In contrast, a CD27+ natural killer (NK) cell subset accumulated in the lungs of RMs with LTBI. This NK cell population was also detected in the circulation of humans with LTBI. This characterization of lung immune cells enhances our understanding of TB immunopathogenesis and provides potential targets for therapies and vaccines for TB control. Supported by ORIP (P51OD011104 and P51OD011133), NHLBI, and NIAID.
Antiretroviral Therapy Does Not Reduce Tuberculosis Reactivation in a Tuberculosis-HIV Coinfection Model
Ganatra et al., Journal of Clinical Investigation. 2020.
https://www.jci.org/articles/view/136502
Despite treatment of HIV with antiretroviral therapy (ART), the risk of tuberculosis (TB) reactivation is higher in HIV-infected than HIV-uninfected persons. Researchers used Mycobacterium tuberculosis/SIV-coinfected rhesus macaques to model the impact of ART on TB reactivation due to HIV-induced immunosuppression. ART significantly reduced viral loads and increased CD4+ T-cell counts in blood, spleen, and bronchoalveolar lavage samples, but it did not reduce the risk of SIV-induced TB reactivation during the early phase of treatment. This study offers a translational model for the investigation of TB/SIV coinfection and the evaluation of treatment regimens to prevent TB reactivation in HIV-infected individuals. Supported by ORIP (P51OD011133, P51OD011132) and NIAID.

