Selected Grantee Publications
- Clear All
- 10 results found
- Nonhuman Primate Models
- Vaccines/Therapeutics
- Imaging
Extended Survival of 9- and 10-Gene-Edited Pig Heart Xenografts With Ischemia Minimization and CD154 Costimulation Blockade-Based Immunosuppression
Chaban et al., The Journal of Heart and Lung Transplantation. 2024.
https://pubmed.ncbi.nlm.nih.gov/39097214
Heart transplantations are severely constrained from the shortage of available organs derived from human donors. Xenotransplantation of hearts from gene-edited (GE) pigs is a promising way to address this problem. Researchers evaluated GE pig hearts with varying knockouts and human transgene insertions. Human transgenes are introduced to mitigate important physiological incompatibilities between pig cells and human blood. Using a baboon heterotopic cardiac transplantation model, one female and seven male specific-pathogen-free baboons received either a 3-GE, 9-GE, or 10-GE pig heart with an immunosuppression regimen targeting CD40/CD154. Early cardiac xenograft failure with complement activation and multifocal infarcts were observed with 3-GE pig hearts, whereas 9- and 10-GE pig hearts demonstrated successful graft function and prolonged survival. These findings show that one or more transgenes of the 9- and 10-GE pig hearts with CD154 blockade provide graft protection in this preclinical model. Supported by ORIP (U42OD011140) and NIAID.
Placental Gene Therapy in Nonhuman Primates: A Pilot Study of Maternal, Placental, and Fetal Response to Non-Viral, Polymeric Nanoparticle Delivery of IGF1
Wilson et al., Molecular Human Reproduction. 2024.
https://academic.oup.com/molehr/article/30/11/gaae038/7876288#493719584
This study investigates a novel nanoparticle-mediated gene therapy approach for addressing fetal growth restriction (FGR) in pregnant female nonhuman primates. Using polymer-based nanoparticles delivering a human insulin-like growth factor 1 (IGF1) transgene, the therapy targets the placenta via ultrasound-guided injections. Researchers evaluated maternal, placental, and fetal responses by analyzing tissues, immunomodulatory proteins, and hormones (progesterone and estradiol). Findings highlight the potential of IGF1 nanoparticles to correct placental insufficiency by enhancing fetal growth, providing a groundbreaking advancement for in utero treatments. This research supports further exploration of nonviral gene therapies for improving pregnancy outcomes and combating FGR-related complications. Supported by ORIP (P51OD011106) and NICHD.
Cytomegalovirus Vaccine Vector-Induced Effector Memory CD4+ T cells Protect Cynomolgus Macaques From Lethal Aerosolized Heterologous Avian Influenza Challenge
Malouli et al., Nature Communications. 2024.
Development of a universal influenza vaccine that protects against seasonal strains and future pandemic influenza viruses is a necessity because of the limited efficacy of current influenza vaccines. Researchers developed a cynomolgus macaque β-herpesvirus cytomegalovirus (CyCMV) vaccine that targets the highly conserved proteins in influenza viruses. Male and female Mauritian-origin cynomolgus macaques (MCM) were vaccinated and boosted with the CyCMV vaccine prior to being challenged with small-particle aerosols containing highly pathogenic avian influenza (HPAI). MCMs receiving the CyCMV vaccine still presented with fever and pulmonary infiltration but demonstrated significant protection against HPAI-induced mortality. Unvaccinated MCMs challenged with HPAI did not survive. Survival was correlated with the magnitude of influenza-specific CD4+ T cells prior to infection. These results demonstrate the efficacy of a novel vaccine that protects against HPAI through a CD4 T cell–mediated response. Supported by ORIP (P51OD010425, P51OD011092) and NIAID.
Administration of Anti-HIV-1 Broadly Neutralizing Monoclonal Antibodies With Increased Affinity to Fcγ Receptors During Acute SHIV AD8-EO Infection
Dias et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-51848-y
Anti-HIV broadly neutralizing antibodies (bNAbs) mediate virus neutralization and antiviral effector functions through Fab and Fc domains, respectively. This study investigated the efficacy of wild-type (WT) bNAbs and modified bNAbs with enhanced affinity for Fcγ receptors (S239D/I332E/A330L [DEL]) after acute simian-HIVAD8-EO (SHIVAD8-EO) infection in male and female rhesus macaques. The emergence of the virus in the plasma and lymph nodes occurred earlier in macaques given DEL bNAbs than in those given WT bNAbs. Overall, the administration of DEL bNAbs revealed higher levels of immune responses. The results suggest that bNAbs with an enhanced Fcγ receptor affinity offer a potential therapeutic strategy by targeting HIV more effectively during early infection stages. Supported by ORIP (P40OD028116), NCI, and NIAID.
In Vivo MRI Is Sensitive to Remyelination in a Nonhuman Primate Model of Multiple Sclerosis
Donadieu et al., eLife. 2023.
https://pubmed.ncbi.nlm.nih.gov/37083540/
Experimental autoimmune encephalomyelitis (EAE) in the common marmoset is a model for studying inflammatory demyelination in multiple sclerosis (MS). Researchers investigated the feasibility and sensitivity of magnetic resonance imaging (MRI) in characterizing remyelination, a crucial step to recover from MS. Investigators demonstrated that multisequence 7T MRI could detect spontaneous remyelination in marmoset EAE at high statistical sensitivity and specificity in vivo. This study suggests that in vivo MRI can be used for preclinical testing of therapeutic remyelinating agents for MS. Supported by ORIP (R21OD030163) and NINDS.
Molecular Insights Into Antibody-Mediated Protection Against the Prototypic Simian Immunodeficiency Virus
Zhao et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-32783-2
Most simian immunodeficiency virus (SIV) vaccines have focused on inducing T cell responses alone or in combination with non-neutralizing antibody responses. To date, studies investigating neutralizing antibody (nAb) responses to protect against SIV have been limited. In this study, researchers isolated 12 potent monoclonal nAbs from chronically infected rhesus macaques of both sexes and mapped their binding specificities on the envelope trimer structure. They further characterized the structures using cryogenic electron microscopy, mass spectrometry, and computational modeling. Their findings indicate that, in the case of humoral immunity, nAb activity is necessary and sufficient for protection against SIV challenge. This work provides structural insights for future vaccine design. Supported by ORIP (P51OD011106), NIAID, and NCI.
Dynamics and Origin of Rebound Viremia in SHIV-Infected Infant Macaques Following Interruption of Long-Term ART
Obregon-Perko et al., JCI Insight. 2021.
https://pubmed.ncbi.nlm.nih.gov/34699383/
Animal models that recapitulate human COVID-19 disease are critical for understanding SARS-CoV-2 viral and immune dynamics, mechanisms of disease, and testing of vaccines and therapeutics. A group of male pigtail macaques (PTMs) were euthanized either 6- or 21-days after SARS-CoV-2 viral challenge and demonstrated mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, virus-targeting T cells were predominantly CD4+, increases in circulating inflammatory and coagulation markers, pulmonary pathologic lesions, and the development of neutralizing antibodies were observed. Collectively, the data suggests PTMs are a valuable model to study COVID-19 pathogenesis and may be useful for testing vaccines and therapeutics. Supported by ORIP (P51OD011104) and NIAID.
Innate Immunity Stimulation via CpG Oligodeoxynucleotides Ameliorates Alzheimer’s Disease Pathology in Aged Squirrel Monkeys
Patel et al., Brain: A Journal of Neurology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34128045/
Alzheimer's disease is the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The authors have shown in transgenic Alzheimer's disease mouse models that harnessing innate immunity via TLR9 agonist CpG oligodeoxynucleotides (ODNs) modulates age-related defects associated with immune cells and safely reduces amyloid plaques, oligomeric amyloid-β, tau pathology, and cerebral amyloid angiopathy (CAA). They used a nonhuman primate model for sporadic Alzheimer's disease pathology that develops extensive CAA-elderly squirrel monkeys. They demonstrate that long-term use of Class B CpG ODN 2006 induces a favorable degree of innate immunity stimulation. CpG ODN 2006 has been well established in numerous human trials for a variety of diseases. This evidence together with their earlier research validates the beneficial therapeutic outcomes and safety of this innovative immunomodulatory approach. Supported by ORIP (P40OD010938), NINDS, NIA, and NCI.
Neutralizing Antibody Vaccine for Pandemic and Pre-Emergent Coronaviruses
Saunders et al., Nature. 2021.
https://doi.org/10.1038/s41586-021-03594-0
SARS-CoV-2 is a new member of the betacoronavirus (beta-CoV) genus, which also includes two common mild beta-CoVs and the life-threatening SARS-CoV-1 and MERS-CoV. Vaccines that elicit protective immunity against SARS-CoV-2 and beta-CoVs that circulate in animals could prevent future pandemics. Researchers designed a novel 24-mer SARS-CoV-2 receptor binding domain-sortase A conjugated nanoparticle vaccine (RBD-scNP). Investigators demonstrated that the immunization of macaques with RBD-scNP, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV, and multiple SARS-CoV-2 variants of concern. This pioneering approach serves as a multimeric protein platform for the further development of generalized anti-beta-CoV vaccines. Supported by ORIP (U42OD021458), NIAID, and NCI.