Selected Grantee Publications
- Clear All
- 2 results found
- Nonhuman Primate Models
- COVID-19/Coronavirus
- 2024
A Single-Dose Intranasal Live-Attenuated Codon Deoptimized Vaccine Provides Broad Protection Against SARS-CoV-2 and Its Variants
Liu et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39187479
Researchers developed an intranasal, single-dose, live-attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) vaccine (CDO-7N-1) using codon deoptimization. This vaccine demonstrates broad protection against SARS-CoV-2 variants, with highly attenuated replication and minimal lung pathology across multiple in vivo passages. The vaccine induced robust mucosal and systemic neutralizing antibodies, as well as T-cell responses, in male and female hamsters, female K18-hACE2 mice, and male HFH4-hACE2 mice. In male and female cynomolgus macaques, CDO-7N-1 effectively prevented infection, reduced severe disease, and limited transmission of SARS-CoV-2 variants. This innovative approach offers potential advantages over traditional spike-protein vaccines by providing durable protection and targeting emerging variants to curb virus transmission. Supported by ORIP (K01OD026529).
Pathogenesis and Virulence of Coronavirus Disease: Comparative Pathology of Animal Models for COVID-19
Kirk et al., Virulence. 2024.
https://pubmed.ncbi.nlm.nih.gov/38362881
Researchers have used animal models that can replicate clinical and pathologic features of severe human coronavirus infections to develop novel vaccines and therapeutics in humans. The purpose of this review is to describe important animal models for COVID-19, with an emphasis on comparative pathology. The highlighted species included mice, ferrets, hamsters, and nonhuman primates. Knowledge gained from studying these animal models can help inform appropriate model selection for disease modeling, as well as for vaccine and therapeutic developments. Supported by ORIP (T32OD010993) and NIAID.