Selected Grantee Publications
- Clear All
- 3 results found
- Nonhuman Primate Models
- COVID-19/Coronavirus
- Imaging
SARS-CoV-2 Infects Neurons and Induces Neuroinflammation in a Non-Human Primate Model of COVID-19
Beckman et al., Cell Reports. 2022.
https://www.doi.org/10.1016/j.celrep.2022.111573
SARS-CoV-2 causes brain fog and other neurological complications in some patients. It has been unclear whether SARS-CoV-2 infects the brain directly or whether central nervous system sequelae result from systemic inflammatory responses triggered in the periphery. Using a rhesus macaque model, researchers detected SARS-CoV-2 in the olfactory cortex and interconnected regions 7 days after infection, demonstrating that the virus enters the brain through the olfactory nerve. Neuroinflammation and neuronal damage were more severe in elderly monkeys with type 2 diabetes. The researchers found that in aged monkeys, SARS-CoV-2 traveled farther along nerve pathways to regions associated with Alzheimer's disease. Supported by ORIP (P51OD011107) and NIA.
In Vitro and In Vivo Functions of SARS-CoV-2 Infection-Enhancing and Neutralizing Antibodies
Li et al., Cell. 2021.
https://doi.org/10.1016/j.cell.2021.06.021
Antibody-dependent enhancement of infection is a concern for clinical use of antibodies. Researchers isolated neutralizing antibodies against the receptor-binding domain (RBD) or N-terminal domain (NTD) of SARS-CoV-2 spike from COVID-19 patients. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific binding modes. RBD and NTD antibodies mediated both neutralization and infection enhancement in vitro. However, infusion of these antibodies into mice or macaques resulted in suppression of virus replication, demonstrating that antibody-enhanced infection in vitro does not necessarily predict enhanced infection in vivo. RBD-neutralizing antibodies having cross-reactivity against coronaviruses were protective against SARS-CoV-2, the most potent of which was DH1047. Supported by ORIP (P40OD012217, U42OD021458, S10OD018164), NIAID, NCI, NIGMS, and NIH Common Fund.
Neutralizing Antibody Vaccine for Pandemic and Pre-Emergent Coronaviruses
Saunders et al., Nature. 2021.
https://doi.org/10.1038/s41586-021-03594-0
SARS-CoV-2 is a new member of the betacoronavirus (beta-CoV) genus, which also includes two common mild beta-CoVs and the life-threatening SARS-CoV-1 and MERS-CoV. Vaccines that elicit protective immunity against SARS-CoV-2 and beta-CoVs that circulate in animals could prevent future pandemics. Researchers designed a novel 24-mer SARS-CoV-2 receptor binding domain-sortase A conjugated nanoparticle vaccine (RBD-scNP). Investigators demonstrated that the immunization of macaques with RBD-scNP, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV, and multiple SARS-CoV-2 variants of concern. This pioneering approach serves as a multimeric protein platform for the further development of generalized anti-beta-CoV vaccines. Supported by ORIP (U42OD021458), NIAID, and NCI.