Selected Grantee Publications
- Clear All
- 2 results found
- Nonhuman Primate Models
- nidcr
- 2021
Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome
McDew-White et al., EBioMedicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34954656/
HIV-associated periodontal disease (PD) affects people living with HIV (PLWH) on combination anti-retroviral therapy (cART). Researchers used a systems biology approach to investigate the molecular, metabolome, and microbiome changes underlying PD and its modulation by phytocannabinoids (Δ9-THC) in rhesus macaques. Δ9-THC reduced IDO1 protein expression. The findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis, and potentially metabolic disease in PLWH on cART. Supported by ORIP (P51OD011104, P51OD011133, U42OD010442), NIAID, NIDA, NIDDK, NIDCR, and NIMH.
CD4+ T Cells Are Dispensable for Induction of Broad Heterologous HIV Neutralizing Antibodies in Rhesus Macaques
Sarkar et al., Frontiers in Immunology. 2021.
https://www.frontiersin.org/articles/10.3389/fimmu.2021.757811/full
Researchers investigated the humoral response in vaccinated rhesus macaques with CD4+ T cell depletion, using the VC10014 DNA protein co-immunization vaccine platform (with gp160 plasmids and gp140 trimeric proteins derived from an HIV-1 infected subject). Both CD4+-depleted and non-depleted animals developed comparable Tier 1 and 2 heterologous HIV-1 neutralizing plasma antibody titers. Thus, primates generate HIV neutralizing antibodies in the absence of robust CD4+ T cell help, which has important implications for vaccine development. Supported by ORIP (P51OD011092, P40OD028116, U42OD023038, U42OD010426), NIAID, and NIDCR.