Selected Grantee Publications
- Clear All
- 52 results found
- Nonhuman Primate Models
- nci
Lymph-Node-Based CD3+ CD20+ Cells Emerge From Membrane Exchange Between T Follicular Helper Cells and B Cells and Increase Their Frequency Following Simian Immunodeficiency Virus Infection
Samer et al., Journal of Virology. 2023.
https://www.doi.org/10.1128/jvi.01760-22
CD4+ T follicular helper cells are known to persist during antiretroviral therapy (ART) and have been identified as key targets for viral replication and persistence. Researchers identified a lymphocyte population that expresses CD3 (i.e., T cell lineage marker) and CD20 (i.e., B cell lineage marker) on the cellular surface in lymphoid tissues from rhesus macaques of both sexes and humans of male and female sexes. In macaques, the cells increased following simian immunodeficiency virus infection, were reduced with ART, and increased in frequency after ART interruption. These cells represent a potential area for future therapeutic strategies. Supported by ORIP (P51OD011132, U42OD011023), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.
Efficient Ex Vivo Expansion of Conserved Element Vaccine-Specific CD8+ T Cells from SHIV-Infected, ART-Suppressed Nonhuman Primates
Dross et al., Frontiers in Immunology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189133/
HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. Using male rhesus macaques, investigators sought to increase the frequency of specific T cell responses in vivo using an ex vivo cell manufacturing approach. The resulting products contained high frequencies of specific, polyfunctional T cells, but no significant differences in T cell persistence were observed, nor was acquisition of simian–human immunodeficiency virus (SHIV). This work underscores this animal model as an important approach to optimize the manufacturing of antigen-specific immune effectors that can prevent virus acquisition and control viral rebound after discontinuing antiretroviral therapy (ART). Supported by ORIP (P51OD010425, U42OD011123), NIAID, and NCI.
Effect of Passive Administration of Monoclonal Antibodies Recognizing Simian Immunodeficiency Virus (SIV) V2 in CH59-Like Coil/Helical or β-Sheet Conformations on Time of SIVmac251 Acquisition
Stamos et al., Journal of Virology. 2023.
https://journals.asm.org/doi/10.1128/jvi.01864-22
Research suggests that the SIV variable region 2 (V2) is a region of virus vulnerability, likely because of its exposure on the apex of virions and on the surfaces of SIV-infected cells. Researchers examined the effects of two monoclonal antibodies, NCI05 and NCI09, on the acquisition of SIV using rhesus macaques (sex not specified). They found that NCI05, but not NCI09, delays SIV acquisition, highlighting the complexity of antibody responses to V2. Both antibodies were unable to decrease the risk of viral acquisition. This study demonstrates that such antibodies as NCI05 alone are insufficient to protect against SIV acquisition. Supported by ORIP (S10OD027000), NIAID, and NCI.
Cerebrospinal Fluid Protein Markers Indicate Neuro-Damage in SARS-CoV-2-Infected Nonhuman Primates
Maity et al., Molecular & Cellular Proteomics. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981268/
In this study, researchers examined the proteins expressed in cerebrospinal fluid (CSF) in nonhuman primates (NHPs) to better understand how COVID-19 infection can result in brain pathology, a common outcome. The study found that even in NHPs with minimal or mild COVID‑19, CSF proteins were significantly dysregulated compared with uninfected NHPs. Furthermore, the most affected proteins were enriched in the same brain regions that show lesions after COVID-19 infection, including the cerebral cortex, basal ganglia, and brain stem. Collectively, these regions have wide-ranging control over such crucial functions as cognition, motor control, and breathing, showing how even mild COVID-19 infection can result in significant neurological impairment. Supported by ORIP (P51OD011104, S10OD032453), NIGMS, NCI, and NICHD.
Longitudinal Characterization of Circulating Extracellular Vesicles and Small RNA During Simian Immunodeficiency Virus Infection and Antiretroviral Therapy
Huang et al., AIDS. 2023.
https://www.doi.org/10.1097/QAD.0000000000003487
Antiretroviral therapy is effective for controlling HIV infection but does not fully prevent early aging disorders or serious non-AIDS events among people with HIV. Using pigtail and rhesus macaques (sex not specified), researchers profiled extracellular vesicle small RNAs during different phases of simian immunodeficiency virus infection to explore the potential relationship between extracellular vesicle–associated small RNAs and the infection process. They reported that average particle counts correlated with infection, but the trend could not be explained fully by virions. These findings raise new questions about the distribution of extracellular vesicle RNAs in HIV latent infection. Supported by ORIP (U42OD013117), NIDA, NIMH, NIAID, NCI, and NINDS.
Infant Rhesus Macaques Immunized Against SARS-CoV-2 Are Protected Against Heterologous Virus Challenge 1 Year Later
Milligan et al., Science Translational Medicine. 2023.
https://doi.org/10.1126/scitranslmed.add6383
The Moderna and Pfizer–BioNTech mRNA vaccines received emergency use authorization for infants 6 months and older in June 2022, but questions remain regarding the durability of vaccine efficacy against emerging variants in this age group. Using a two-dose vaccine regimen consisting of stabilized prefusion Washington-strain spike protein encoded by mRNA and encapsulated in lipid nanoparticles, the investigators immunized 2-month-old rhesus macaques of both sexes. They found that the immune responses persisted and protected from severe disease after heterologous challenge with the Delta variant 1 year later. The decay kinetics of vaccine-induced neutralizing antibody responses in the infant monkeys are comparable to those observed in adult humans and nonhuman primates. Supported by ORIP (P51OD011107), NIAID, and NCI.
Late Gene Expression–Deficient Cytomegalovirus Vectors Elicit Conventional T Cells That Do Not Protect Against SIV
Hansen et al., Journal of Clinical Investigation Insight. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070102/
Cytomegalovirus (CMV)–based vaccines aim to exploit unique immunological adaptations, including host manipulation and immune evasion strategies. Translating CMV-based vaccines from rhesus macaques to humans requires translating the immune factors responsible for efficacy, as well as vaccine vectors that are sufficiently safe for widespread use. Researchers examined the impact of a stringent attenuation strategy on vector-induced immune protection against simian immunodeficiency virus (SIV) in rhesus macaques of both sexes. They reported that elicited CD8+ T cells exclusively failed to protect against SIV challenge. These data suggest that late viral gene expression and/or residual in vivo spreading are required to induce protective CD8+ T cell responses. Supported by ORIP (P51OD011092, P51OD011107, S10OD016261), NCI, NIAID, and NCATS.
Chronic Immune Activation and Gut Barrier Dysfunction Is Associated with Neuroinflammation in ART-Suppressed SIV+ Rhesus Macaques
Byrnes et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085024/
About 40% of people with HIV develop neurocognitive disorders, potentially resulting from persistent infection in the brain and neuroinflammation. Investigators characterized the central nervous system reservoir and immune environment of simian immunodeficiency virus (SIV)–infected rhesus macaques of both sexes during acute, chronic, or antiretroviral therapy (ART)–suppressed infection. They reported that neuroinflammation and blood–brain barrier dysfunction correlated with viremia and immune activation in the gut. Their findings suggest that gastrointestinal tract damage can contribute to neuroimmune activation and inflammation, even in the absence of SIV or HIV infection. This work also has implications for other neurological disorders where chronic inflammation is associated with pathogenesis. Supported by ORIP (P51OD011132, P51OD011092, U42OD011023, R24OD010445), NIAID, NCI, and NIMH.
A Class of Anti-Inflammatory Lipids Decrease with Aging in the Central Nervous System
Tan et al., Nature Chemical Biology. 2023.
https://doi.org/10.1038/s41589-022-01165-6
Impaired lipid metabolism in the brain has been implicated in neurological disorders of aging, yet analyses of lipid pathway changes with age have been lacking. The researchers examined the brain lipidome of mice of both sexes across the lifespan using untargeted lipidomics. They found that 3-sulfogalactosyl diacylglycerols (SGDGs) are structural components of myelin and decline with age in the central nervous system. The researchers discovered that SGDGs also are present in male human and rhesus macaque brains, demonstrating their evolutionary conservation in mammals. The investigators showed that SGDGs possess anti-inflammatory activity, suggesting a potential role for this lipid class in age-related neurodegenerative diseases. Supported by ORIP (P51OD011092), NIA, NCI, NIDDK, and NINDS.
CD8+ Lymphocytes Do Not Impact SIV Reservoir Establishment under ART
Statzu et al., Nature Microbiology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894752/
The HIV-1 latent reservoir has been shown to persist following antiretroviral therapy (ART), but the mechanisms underlying the establishment and maintenance of the reservoir are not fully understood. Using rhesus macaques of both sexes, investigators examined the effects of CD8+ T cells on formation of the latent reservoir with simian immunodeficiency virus (SIV) infection. They found that CD8+ T cell depletion resulted in slower decline of viremia but did not change the frequency of infected CD4+ T cells in the blood or lymph nodes. Additionally, the size of the persistent reservoir was unchanged. These findings suggest that the viral reservoir is established largely independent of SIV-specific cytotoxic T lymphocyte control. Supported by ORIP (P51OD011132), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.