Selected Grantee Publications
- Clear All
- 260 results found
- Other Animal Models
- Nonhuman Primate Models
Immune Perturbation Following SHIV Infection Is Greater in Newborn Macaques Than in Infants
Shapiro et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39190496
This study investigates immune perturbation following simian-human immunodeficiency virus (SHIV) infection in newborn and infant male and female rhesus macaques, highlighting significant differences in pathogenesis. Although plasma viremia and lymph node viral DNA were similar, newborns exhibited higher viral DNA levels in gut and lymphoid tissues 6–10 weeks postinfection than infants. Additionally, newborns showed greater immune alterations, with skewed monocyte and CD8+ T-cell profiles and minimal type I interferon responses. These findings suggest age-dependent immunological responses to SHIV and underscore the vulnerability of newborns to HIV-related pathogenesis, providing insights into immune development and pediatric HIV management. Supported by ORIP (P51OD011092, U42OD023038, U42OD010426) and NIAID.
Effect of Metabolic Status on Response to SIV Infection and Antiretroviral Therapy in Nonhuman Primates
Webb et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39115937
This study examines how metabolic health influences the efficacy of antiretroviral therapy (ART). Using lean and obese male rhesus macaques, researchers explored the progression of simian immunodeficiency virus (SIV) infection. Obese macaques with metabolic dysfunction experienced more rapid disease progression and had a diminished response to ART than lean macaques. This study suggests metabolic health plays a significant role in HIV progression and treatment outcomes, highlighting the importance of managing metabolic conditions in people with HIV. Supported by ORIP (P51OD011092, S10OD025002), NIAID, and NIDDK.
Placental Gene Therapy in Nonhuman Primates: A Pilot Study of Maternal, Placental, and Fetal Response to Non-Viral, Polymeric Nanoparticle Delivery of IGF1
Wilson et al., Molecular Human Reproduction. 2024.
https://academic.oup.com/molehr/article/30/11/gaae038/7876288#493719584
This study investigates a novel nanoparticle-mediated gene therapy approach for addressing fetal growth restriction (FGR) in pregnant female nonhuman primates. Using polymer-based nanoparticles delivering a human insulin-like growth factor 1 (IGF1) transgene, the therapy targets the placenta via ultrasound-guided injections. Researchers evaluated maternal, placental, and fetal responses by analyzing tissues, immunomodulatory proteins, and hormones (progesterone and estradiol). Findings highlight the potential of IGF1 nanoparticles to correct placental insufficiency by enhancing fetal growth, providing a groundbreaking advancement for in utero treatments. This research supports further exploration of nonviral gene therapies for improving pregnancy outcomes and combating FGR-related complications. Supported by ORIP (P51OD011106) and NICHD.
Engineered Deletions of HIV Replicate Conditionally to Reduce Disease in Nonhuman Primates
Pitchai et al., Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39116226/
Current antiretroviral therapy (ART) for HIV is limited by the necessity for continuous administration. Discontinuation of ART leads to viral rebound. A therapeutic interfering particle (TIP) was developed as a novel single-administration HIV therapy using defective interfering particles. TIP treatment in two humanized mouse models demonstrated a significant reduction in HIV viral load. TIP intervention was completed 24 hours prior to a highly pathogenic simian immunodeficiency virus (SIV) challenge in a nonhuman primate (NHP) rhesus macaque infant model. Compared to untreated SIV infection, NHPs that received TIP treatment displayed no visible signs of SIV-induced AIDS and exhibited improved seroconversion and a significant survival advantage to the 30-week clinical endpoint. Peripheral blood mononuclear cells isolated from HIV-infected patients showed that TIP treatment reduced HIV outgrowth. This study demonstrates the potential use of a single-administration TIP for HIV treatment. Supported by ORIP (P51OD011092, U42OD010426), NCI, NIAID, and NIDA.
The Splicing Factor hnRNPL Demonstrates Conserved Myocardial Regulation Across Species and Is Altered in Heart Failure
Draper et al., FEBS Letters. 2024.
https://pubmed.ncbi.nlm.nih.gov/39300280/
The 5-year mortality rate of heart failure (HF) is approximately 50%. Gene splicing, induced by splice factors, is a post-transcriptional modification of mRNA that may regulate pathological remodeling in HF. Researchers investigated the role of the splice factor heterogenous nuclear ribonucleoprotein-L (hnRNPL) in cardiomyopathy. hnRNPL protein expression is significantly increased in a male C57BL/6 transaortic constriction–induced HF mouse model and in clinical samples derived from canine or human HF patients. Cardiac-restricted knockdown of the hnRNPL homolog in Drosophila revealed systolic dysfunction and reduced life span. This study demonstrates a conserved cross-species role of hnRNPL in regulating heart function. Supported by ORIP (K01OD028205) and NHLBI.
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
Enterohemorrhagic Escherichia coli (EHEC) Disrupts Intestinal Barrier Integrity in Translational Canine Stem Cell-Derived Monolayers
Nagao et al., Microbiology Spectrum. 2024.
https://pubmed.ncbi.nlm.nih.gov/39162490/
EHEC produces Shiga toxin, which causes acute colitis with symptoms such as hemolytic uremic syndrome and bloody diarrhea. The researchers developed a colonoid-derived monolayer model to understand EHEC’s impact on canine gut health. Colonoid-derived monolayers co-cultured with EHEC demonstrated key differences compared with the control and nonpathogenic E. coli co-cultures. Scanning electron microscopy displayed EHEC aggregated and attached to the microvilli. EHEC-infected monolayers demonstrated significantly weakened membrane integrity and increased inflammatory cytokine production, specifically TNFα. The researchers developed a novel in vitro model that offers an additional platform for understanding the mechanisms of EHEC pathogenicity, developing therapeutics for EHEC, and studying additional enteric pathogens. Supported by ORIP (K01OD030515, R21OD031903).
Cytomegalovirus Vaccine Vector-Induced Effector Memory CD4+ T cells Protect Cynomolgus Macaques From Lethal Aerosolized Heterologous Avian Influenza Challenge
Malouli et al., Nature Communications. 2024.
Development of a universal influenza vaccine that protects against seasonal strains and future pandemic influenza viruses is a necessity because of the limited efficacy of current influenza vaccines. Researchers developed a cynomolgus macaque β-herpesvirus cytomegalovirus (CyCMV) vaccine that targets the highly conserved proteins in influenza viruses. Male and female Mauritian-origin cynomolgus macaques (MCM) were vaccinated and boosted with the CyCMV vaccine prior to being challenged with small-particle aerosols containing highly pathogenic avian influenza (HPAI). MCMs receiving the CyCMV vaccine still presented with fever and pulmonary infiltration but demonstrated significant protection against HPAI-induced mortality. Unvaccinated MCMs challenged with HPAI did not survive. Survival was correlated with the magnitude of influenza-specific CD4+ T cells prior to infection. These results demonstrate the efficacy of a novel vaccine that protects against HPAI through a CD4 T cell–mediated response. Supported by ORIP (P51OD010425, P51OD011092) and NIAID.
Human Stem Cell-Derived Cardiomyocytes Integrate Into the Heart of Monkeys With Right Ventricular Pressure Overload
Scholz et al., Cell Transplantation. 2024.
https://journals.sagepub.com/doi/10.1177/09636897241290367
Patients with single-ventricle congenital heart defects suffer from right ventricular pressure overload (RVPO). Researchers developed a novel pulmonary artery banding (PAB) rhesus macaque model to induce RVPO. This study investigated the efficacy of human induced pluripotent stem cell cardiac lineage cell (hiPSC-CL) delivery at low or high dose into adult male and female rhesus macaques with right ventricular dysfunction. The findings indicate that hiPSC-CLs were successfully grafted and integrated to match the surrounding host right ventricle myocardium. These results suggest hiPSC-CL therapy is a potential adjunctive treatment for RVPO, but future research will be needed to elucidate the beneficial effects. Supported by ORIP (P51OD011106).
Administration of Anti-HIV-1 Broadly Neutralizing Monoclonal Antibodies With Increased Affinity to Fcγ Receptors During Acute SHIV AD8-EO Infection
Dias et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-51848-y
Anti-HIV broadly neutralizing antibodies (bNAbs) mediate virus neutralization and antiviral effector functions through Fab and Fc domains, respectively. This study investigated the efficacy of wild-type (WT) bNAbs and modified bNAbs with enhanced affinity for Fcγ receptors (S239D/I332E/A330L [DEL]) after acute simian-HIVAD8-EO (SHIVAD8-EO) infection in male and female rhesus macaques. The emergence of the virus in the plasma and lymph nodes occurred earlier in macaques given DEL bNAbs than in those given WT bNAbs. Overall, the administration of DEL bNAbs revealed higher levels of immune responses. The results suggest that bNAbs with an enhanced Fcγ receptor affinity offer a potential therapeutic strategy by targeting HIV more effectively during early infection stages. Supported by ORIP (P40OD028116), NCI, and NIAID.