Selected Grantee Publications
- Clear All
- 6 results found
- Other Animal Models
- Nonhuman Primate Models
- Spectrometry
Matrikine Stimulation of Equine Synovial Fibroblasts and Chondrocytes Results in an In Vitro Osteoarthritis Phenotype
Gagliardi et al., Journal of Orthopaedic Research. 2025.
https://pubmed.ncbi.nlm.nih.gov/39486895
Advancements in therapy development for osteoarthritis (OA) currently are limited due to a lack of physiologically relevant in vitro models. This study aimed to understand the effect of matrikine stimulation, using human recombinant fibronectin fragment containing domains 7–10 (FN7–10), on equine synovial fibroblasts and chondrocytes. Inflammatory cytokines, chemokines, and matrix degradation genes in equine synovial fibroblasts and chondrocytes were significantly altered in response to FN7–10 stimulation; marked upregulation was observed in interleukin-6 (IL-6), IL-4, IL-10, matrix metalloproteinase 1 (MMP1), MMP3, MMP13, CCL2/MCP1, and CXCL6/GCP-2 gene expression. Only IL-6 protein production was significantly increased in media isolated from cells stimulated with FN7–10. These results support the potential use of equine synovial fibroblasts and chondrocytes—employing FN7–10—as representative in vitro models to study OA. Supported by ORIP (T32OD011130) and NIAMS.
SHIV Remission in Macaques With Early Treatment Initiation and Ultra Long-Lasting Antiviral Activity
Daly et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39632836
Antiretroviral therapy (ART) suppresses HIV and simian immunodeficiency virus (SIV) replication but cannot eliminate reservoirs of long-lived infected cells that enable rebound after discontinuation of ART. These researchers hypothesized that ART designed to have long-lasting activity and penetrate tissue reservoirs would be optimized against HIV or SIV remission. Macaques were treated with a four-drug regimen (i.e., oral emtricitabine/tenofovir alafenamide and long-acting cabotegravir/rilpivirine) designed to improve dosing of immune cells, with or without the immune-activating drug vesatolimod (VES), after the onset of SIV viremia. The animals were monitored for 1 year with treatment and 2 additional years following treatment discontinuation. Durable viral suppression was observed in all animals treated with the optimized ART regimen with or without VES. These results will inform novel HIV treatment regimens with long-lasting antiviral activity in humans. Supported by ORIP (P40OD028116).
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
Lymphoid Tissues Contribute to Plasma Viral Clonotypes Early After Antiretroviral Therapy Interruption in SIV-Infected Rhesus Macaques
Solis-Leal et al., Science Translational Medicine. 2023.
https://pubmed.ncbi.nlm.nih.gov/38091409/
Researchers are interested in better understanding the sources, timing, and mechanisms of HIV rebound that occurs after interruption of antiretroviral therapy (ART). Using rhesus macaques (sex not specified), investigators tracked barcoded simian immunodeficiency virus (SIV) clonotypes over time and among tissues. Among the tissues studied, mesenteric lymph nodes, inguinal lymph nodes, and spleen contained viral barcodes detected in plasma. Additionally, the authors reported that CD4+ T cells harbored the most viral RNA after ART interruption. These tissues are likely to contribute to viral reactivation and rebound after ART interruption, but further studies are needed to evaluate the relative potential contributions from other tissues and organs. Supported by ORIP (P51OD011104, P51OD011133, S10OD028732, S10OD028653), NCI, NIMH, and NINDS.
Molecular Insights Into Antibody-Mediated Protection Against the Prototypic Simian Immunodeficiency Virus
Zhao et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-32783-2
Most simian immunodeficiency virus (SIV) vaccines have focused on inducing T cell responses alone or in combination with non-neutralizing antibody responses. To date, studies investigating neutralizing antibody (nAb) responses to protect against SIV have been limited. In this study, researchers isolated 12 potent monoclonal nAbs from chronically infected rhesus macaques of both sexes and mapped their binding specificities on the envelope trimer structure. They further characterized the structures using cryogenic electron microscopy, mass spectrometry, and computational modeling. Their findings indicate that, in the case of humoral immunity, nAb activity is necessary and sufficient for protection against SIV challenge. This work provides structural insights for future vaccine design. Supported by ORIP (P51OD011106), NIAID, and NCI.
Metabolomics Analysis of Follicular Fluid Coupled With Oocyte Aspiration Reveals Importance of Glucocorticoids in Primate Periovulatory Follicle Competency
Ravisankar et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-85704-6
Assisted reproductive therapy in primates requires ovarian stimulation protocols, which result in multiple heterogeneous oocytes with variable capacity for fertilization, cleavage, and blastocyst formation. Recovered oocytes from rhesus macaque follicles (n=74 follicles) were fertilized in vitro and classified as failed to cleave, cleaved but arrested, or able to form blastocysts. Metabolomics analysis of the follicular fluid identified 60 metabolites that were different among embryo classifications; key was an increase in the intrafollicular ratio of cortisol to cortisone in the blastocyst group, which was associated with translocation of the glucocorticoid receptor, NR3C1. The data suggest a role for NR3C1 in the regulation of follicular processes, such as expansion of cumulus granulosa cells, via paracrine signaling. Supported by ORIP (P51OD011092) and NICHD.