Selected Grantee Publications
- Clear All
- 6 results found
- Swine Models
- 2021
Challenges and Considerations During In Vitro Production of Porcine Embryos
Chen et al., Cells. 2021.
https://pubmed.ncbi.nlm.nih.gov/34685749/
Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, Chen et al progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made. Supported by ORIP (U42OD011140).
Limited Expansion of Human Hepatocytes in FAH/RAG2-Deficient Swine
Nelson et al., Tissue Engineering – Part A. 2021.
https://pubmed.ncbi.nlm.nih.gov/34309416/
The mammalian liver's regenerative ability has led researchers to engineer animals as incubators for expansion of human hepatocytes. Nelson et al. engineered immunodeficient swine to support expansion of human hepatocytes and identify barriers to their clinical application. Immunodeficient swine were engineered by knockout of the recombinase-activating gene 2 (RAG2) and fumarylacetoacetate hydrolase (FAH). Immature human hepatocytes (ihHCs) were injected into fetal swine by intrauterine cell transplantation (IUCT) at day 40 of gestation. They identified the mechanism of the eventual graft rejection by the intact NK cell population. They confirmed the presence of residual adaptive immunity in this model of immunodeficiency. Supported by ORIP (U42OD011140).
Mineralocorticoid Receptor Blockade Normalizes Coronary Resistance in Obese Swine Independent of Functional Alterations in Kv Channels
Goodwill et al., Basic Research in Cardiology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34018061/
Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening. Supported by ORIP (U42OD011140, S10OD023438), NHLBI, and NIBIB.
Establishing an Immunocompromised Porcine Model of Human Cancer for Novel Therapy Development with Pancreatic Adenocarcinoma and Irreversible Electroporation
Hendricks-Wenger et al., Scientific Reports. 2021.
https://pubmed.ncbi.nlm.nih.gov/33828203/
Efficacious interventions to treat pancreatic cancer lack a preclinical model to recapitulate patients' anatomy and physiology. The authors developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. These pigs were successfully generated using on-demand genetic modifications in embryos. Human Panc01 cells injected into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. This model will be useful to bridge the gap of translating therapies from the bench to clinical application. Supported by ORIP (R21OD027062), NIBIB, and NCI.
Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence
Casalia et al., Journal of Neuroscience. 2021.
https://pubmed.ncbi.nlm.nih.gov/33637558/
The authors report that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents. Their findings reveal that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies. They demonstrate that porcine medial ganglionic eminence exhibits a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity, and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in monkeys and humans), their work allows direct neurodevelopmental comparisons with this literature. Supported by ORIP (U42OD011140) and NINDS.
A Pulsatile Release Platform Based on Photo-Induced Imine-Crosslinking Hydrogel Promotes Scarless Wound Healing
Zhang et al., Nature Communications. 2021.
https://pubmed.ncbi.nlm.nih.gov/33723267/
Skin wound healing is a dynamic and interactive process involving the collaborative efforts of growth factors, extracellular matrix (ECM), and different tissue and cell lineages. Although accumulating studies with a range of different model systems have increased our understanding of the cellular and molecular basis underlying skin scar formation, they have not been effectively translated to therapy. Development of effective therapeutic approaches for skin scar management is urgently needed. In this study, team of investigators devise a water-oil-water double emulsion strategy to encapsulate proteins within a photo-crosslinkable poly-lactic-co-glycolic acid (PLGA) shell, which can produce microcapsules with pulsatile drug release kinetics after administration. The results show that pulsatile release of the TGF-β inhibitor can accelerate skin wound closure while suppressing scarring in murine skin wounds and large animal preclinical models, suggesting that it could be an effective approach to achieve scarless wound healing in skin. Supported by ORIP (R01OD023700).