Selected Grantee Publications
- Clear All
- 5 results found
- Swine Models
- ncats
- nci
Amphiphilic Shuttle Peptide Delivers Base Editor Ribonucleoprotein to Correct the CFTR R553X Mutation in Well-Differentiated Airway Epithelial Cells
Kulhankova et al., Nucleic Acids Research. 2024.
https://academic.oup.com/nar/article/52/19/11911/7771564?login=true
Effective translational delivery strategies for base editing applications in pulmonary diseases remain a challenge because of epithelial cells lining the intrapulmonary airways. The researchers demonstrated that the endosomal leakage domain (ELD) plays a crucial role in gene editing ribonucleoprotein (RNP) delivery activity. A novel shuttle peptide, S237, was created by flanking the ELD with poly glycine-serine stretches. Primary airway epithelia with the cystic fibrosis transmembrane conductance regulator (CFTR) R533X mutation demonstrated restored CFTR function when treated with S237-dependent ABE8e-Cas9-NG RNP. S237 outperformed the S10 shuttle peptide at Cas9 RNP delivery in vitro and in vivo using primary human bronchial epithelial cells and transgenic green fluorescent protein neonatal pigs. This study highlights the efficacy of S237 peptide–mediated RNP delivery and its potential as a therapeutic tool for the treatment of cystic fibrosis. Supported by ORIP (U42OD027090, U42OD026635), NCATS, NHGRI, NHLBI, NIAID, NIDDK, and NIGMS.
A LGR5 Reporter Pig Model Closely Resembles Human Intestine for Improved Study of Stem Cells in Disease
Schaaf et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300223R
The constant epithelial regeneration in the intestine is the sole responsibility of intestinal epithelial stem cells (ISCs), which reside deep in the intestinal crypt structures. To effectively study ISCs, tools to identify this cell population are necessary. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein–Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer model. Overall, this novel porcine model provides critical advancement to the field of translational gastrointestinal research. Supported by ORIP (R21OD019738, K01OD019911), NCI, and NIDDK.
Effects of Acute Femoral Head Ischemia on the Growth Plate and Metaphysis in a Piglet Model of Legg-Calvé-Perthes Disease
Armstrong et al., Osteoarthritis and Cartilage. 2023.
https://pubmed.ncbi.nlm.nih.gov/36696941/
Legg-Calvé-Perthes disease (LCPD) can lead to permanent deformity of the femoral head and premature osteoarthritis, but the underlying cause remains unknown. More work is needed to determine optimal treatment methods for LCPD. Using a piglet model for LCPD, researchers assessed the effects of acute femoral head ischemia on the proximal femoral growth plate and metaphysis. They reported that alterations to the growth plate zones and metaphysis occurred by 2 days post-ischemia and persisted at 7 days post-ischemia. These findings suggest that growth disruption may occur sooner after the onset of ischemia than researchers had hypothesized previously. Supported by ORIP (T32OD010993, K01OD021293), NIAMS, and NCATS.
Establishing an Immunocompromised Porcine Model of Human Cancer for Novel Therapy Development with Pancreatic Adenocarcinoma and Irreversible Electroporation
Hendricks-Wenger et al., Scientific Reports. 2021.
https://pubmed.ncbi.nlm.nih.gov/33828203/
Efficacious interventions to treat pancreatic cancer lack a preclinical model to recapitulate patients' anatomy and physiology. The authors developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. These pigs were successfully generated using on-demand genetic modifications in embryos. Human Panc01 cells injected into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. This model will be useful to bridge the gap of translating therapies from the bench to clinical application. Supported by ORIP (R21OD027062), NIBIB, and NCI.
Induction and Characterization of Pancreatic Cancer in a Transgenic Pig Model
Boas et al., PLOS One. 2020.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239391
Preclinical testing of new therapies for pancreatic cancer has been challenging due to lack of a suitable large animal model. Pigs, however, have similar physiology and immune response to humans. Boas et al report the development of a porcine model for pancreatic cancer. H&E and immunohistochemical stains revealed undifferentiated carcinomas, like those of human pancreatobiliary systems. In several pigs, angiographies revealed that the artery supplying the pancreatic tumor could be catheterized using a 2.4 F microcatheter. In summary, pancreatic cancer can be induced in a transgenic pig, and intra-arterial procedures using catheters designed for human interventions were feasible in this model. Supported by ORIP (U42OD011140) and NCI.