Selected Grantee Publications
- Clear All
- 251 results found
- Swine Models
- Nonhuman Primate Models
Liver-Specific Transgenic Expression of Human NTCP In Rhesus Macaques Confers HBV Susceptibility on Primary Hepatocytes
Rust et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937851
This study establishes the first transgenic nonhuman primate model for hepatitis B virus (HBV). Male and female rhesus macaques were engineered to express the human HBV receptor, NTCP (hNTCP), specifically in the liver. Researchers used PiggyBac transposon technology to introduce a liver-specific NTCP transgene into embryos, which were then implanted into surrogate females. The resulting offspring expressed hNTCP in hepatocytes and demonstrated high susceptibility to HBV infection. This model overcomes the species-specific limitations of HBV research, providing a powerful tool for studying HBV biology and evaluating HBV treatments in a clinically relevant model system. Supported by ORIP (P51OD011092), NIDA, and NIAID.
Peripherally Mediated Opioid Combination Therapy in Mouse and Pig
Peterson et al., The Journal of Pain. 2025.
https://pubmed.ncbi.nlm.nih.gov/39542192
This study evaluates novel opioid combinations for pain relief with reduced side effects. Researchers investigated loperamide (a μ-opioid agonist) with either oxymorphindole or N‑benzyl-oxymorphindole—both δ-opioid receptor partial agonists—in mice (male and female) and pigs (male). These combinations produced synergistic analgesia across species without causing adverse effects or respiratory depression. The therapies significantly reduced hypersensitivity in post-injury models, outperforming morphine alone. These findings suggest that peripherally acting opioid combinations can offer effective, safer alternatives for pain management, potentially lowering opioid misuse and side effects. This approach could improve clinical strategies for treating chronic and acute pain with limited central opioid exposure. Supported by ORIP (T32OD010993), NHLBI, and NIDA.
Suppression of Viral Rebound by a Rev-Dependent Lentiviral Particle in SIV-Infected Rhesus Macaques
Hetrick et al., Gene Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39025983/
Viral reservoirs are a current major barrier that prevents an effective cure for patients with HIV. Antiretroviral therapy (ART) effectively suppresses viral replication, but ART cessation leads to viral rebound due to the presence of viral reservoirs. Researchers conducted in vivo testing of simian immunodeficiency virus (SIV) Rev-dependent vectors in SIVmac239-infected male and female Indian rhesus macaques, 3–6 years of age, to target viral reservoirs. Treatment with the SIV Rev-dependent vector reduced viral rebound and produced neutralizing antibodies following ART cessation. These results indicate the potential to self-control plasma viremia through a neutralizing antibody-based mechanism elicited by administration of Rev-dependent vectors. This research could guide future studies focused on investigating multiple vector injections and quantifying cell-mediated immune responses. Supported by ORIP (P51OD011104, P40OD028116), NIAID, and NIMH.
Single-Cell Transcriptomics Predict Novel Potential Regulators of Acute Epithelial Restitution in the Ischemia-Injured Intestine
Rose et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39853303
Following ischemia in the small intestine, early barrier restoration relies on epithelial restitution to reseal the physical barrier and prevent sepsis. Pigs share a similar gastrointestinal anatomy, physiology, and microbiota with humans. Researchers used neonatal and juvenile, 2- to 6-week-old male and female Yorkshire cross pigs to determine upstream regulators of restitution. Single-cell sequencing of ischemia-injured epithelial cells demonstrated two sub-phenotypes of absorptive enterocytes, with one subset presenting a restitution phenotype. Colony-stimulating factor-1 (CSF1) was the only predicted upstream regulator expressed in juvenile jejunum compared with neonatal jejunum. An in vitro scratch wound assay using IPEC-J2 cells showed that BLZ945, a colony-stimulating factor 1 receptor antagonist, inhibited restitution. Ex vivo ischemia-injured neonatal pig jejunum treated with exogenous CSF1 displayed increased barrier function. This study could inform future research focused on developing novel therapeutics for intestinal barrier injury in patients. Supported by ORIP (T32OD011130, K01OD028207), NCATS, NICHD, and NIDDK.
Pre-Challenge Gut Microbial Signature Predicts RhCMV/SIV Vaccine Efficacy in Rhesus Macaques
Brochu et al., Microbiology Spectrum. 2025.
https://journals.asm.org/doi/10.1128/spectrum.01285-24
Rhesus cytomegalovirus–based simian immunodeficiency virus (RhCMV/SIV) vaccines provide protection against SIV challenge in approximately 60% of vaccinated rhesus macaques. This study assessed the role that gut microbiota play in SIV vaccine efficacy by analyzing the microbiomes of rhesus macaques before and after immunization using novel compositional data analysis techniques and machine-learning strategies. Researchers identified a gut microbial signature that predicted vaccine protection outcomes and correlated with early biomarker changes in the blood (i.e., host immune response to vaccination). This study indicates that the gut microbiome might play a role in vaccine-induced immunity. Supported by ORIP (P51OD011092).
Indoleamine-2,3-Dioxygenase Inhibition Improves Immunity and Is Safe for Concurrent Use with cART During Mtb/SIV Coinfection
Singh et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39114981/
HIV and tuberculosis (TB) coinfection can lead to TB reactivation that is caused by chronic immune system activation. Researchers explored indoleamine-2,3-dioxygenase (IDO) inhibition as a host-directed therapy (HDT) to mitigate immune suppression and TB reactivation in a rhesus macaque Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) model. The IDO inhibitor D-1-methyl tryptophan improved T-cell immunity, reduced tissue damage, and controlled TB-related inflammation without interfering with the efficacy of combinatorial antiretroviral therapy (cART). These findings support IDO inhibition as a potential HDT in HIV/TB coinfection, providing a strategy to balance immune control while preventing TB reactivation in cART-treated patients. Supported by ORIP (S10OD028732, U42OD010442, S10OD028653) and NIAID.
Immune Restoration by TIGIT Blockade is Insufficient to Control Chronic SIV Infection
Webb et al., Journal of Virology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38775481/
T-cell exhaustion from prolonged upregulation of immune checkpoint receptors (ICR) contributes to immune dysfunction and viral persistence of both human and simian immunodeficiency virus (HIV/SIV) infection. Previous in vitro research has demonstrated the potential use of ICR blockade as a therapeutic. Researchers used a monoclonal antibody targeting humanized T cell immunoreceptor with Ig and ITIM domain (TIGIT) in male and female cynomolgus macaque and female rhesus macaque SIV models, 4–14 years of age. TIGIT blockade was well tolerated, with moderately increased proliferation of T cells and natural killer cells, but a reduction in plasma viral load was not observed. Future research to eliminate SIV should combine ICR blockades with other immunotherapies. Supported by ORIP (P51OD011092), NIAID, and NIMH.
A Switch from Glial to Neuronal Gene Expression Alterations in the Spinal Cord of SIV-Infected Macaques on Antiretroviral Therapy
Mulka et al., Journal of Neuroimmune Pharmacology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38862787/
Up to one-third of patients with HIV experience HIV-associated peripheral neuropathy, affecting sensory pathways in the spinal cord. Spinal cord sampling is limited in people with HIV. Researchers examined gene expression alterations in the spinal cords of simian immunodeficiency virus (SIV)-infected male pigtail macaques with and without antiretroviral therapy (ART), using RNA sequencing at key time points throughout infection. Results indicate a shift from glial cell-associated pathways to neuronal pathways in SIV-infected animals receiving ART. These findings suggest that neurons, rather than glia, are predominantly involved in ART-related neurotoxicity and offer new insights into therapeutic strategies for maintaining synaptic homeostasis. Supported by ORIP (U42OD013117, T32OD011089) and NINDS.
Elevated Inflammation Associated With Markers of Neutrophil Function and Gastrointestinal Disruption in Pilot Study of Plasmodium fragile Co-Infection of ART-Treated SIVmac239+ Rhesus Macaques
Nemphos et al., Viruses. 2024.
https://pubmed.ncbi.nlm.nih.gov/39066199/
Because of geographic overlap, a high potential exists for co-infection with HIV and malaria caused by Plasmodium fragile. Meta-analysis of data collected from 1991 to 2018 demonstrated co-incidence of these two infections to be 43%. Researchers used a male rhesus macaque (RM) model, 6–12 years of age, coinfected with P. fragile and antiretroviral (ART)-treated simian immunodeficiency virus (SIV) to mimic HIV/malaria co-infection observed in patients. ART-treated co-infected RMs demonstrated increased levels of inflammatory cytokines, shifts in neutrophil function, and gastrointestinal mucosal dysfunction. This model may be used to study molecular mechanisms of disease pathology and novel therapies, such as neutrophil-targeted interventions, for patients experiencing co-infection. Supported by ORIP (U42OD010568, U42OD024282, P51OD011104, R21OD031435) and NIGMS.
Transiently Boosting Vγ9+Vδ2+ γδ T Cells Early in Mtb Coinfection of SIV-Infected Juvenile Macaques Does Not Improve Mtb Host Resistance
Larson et al., Infection and Immunity. 2024.
https://pubmed.ncbi.nlm.nih.gov/39475292/
Children with HIV have a higher risk of developing tuberculosis (TB), which is caused by the bacterium Mycobacterium tuberculosis (Mtb). This study utilized juvenile Mauritian cynomolgus macaques to investigate whether enhancing Vγ9+Vδ2+ γδ T cells with zoledronate treatment could improve TB resistance in HIV–TB coinfection. Researchers found that although boosting these immune cells temporarily increased their presence, it did not enhance the macaques’ ability to fight Mtb infection. These findings suggest that solely targeting γδ T cells may not be an effective strategy for improving TB immunity in immunocompromised individuals. These insights are crucial for developing better treatments for HIV–TB coinfections. Supported by ORIP (K01OD033539, P51OD011106) and NIAID.