Selected Grantee Publications
- Clear All
- 22 results found
- Swine Models
- Nonhuman Primate Models
- Microscopy
A Single-Dose Intranasal Live-Attenuated Codon Deoptimized Vaccine Provides Broad Protection Against SARS-CoV-2 and Its Variants
Liu et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39187479
Researchers developed an intranasal, single-dose, live-attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) vaccine (CDO-7N-1) using codon deoptimization. This vaccine demonstrates broad protection against SARS-CoV-2 variants, with highly attenuated replication and minimal lung pathology across multiple in vivo passages. The vaccine induced robust mucosal and systemic neutralizing antibodies, as well as T-cell responses, in male and female hamsters, female K18-hACE2 mice, and male HFH4-hACE2 mice. In male and female cynomolgus macaques, CDO-7N-1 effectively prevented infection, reduced severe disease, and limited transmission of SARS-CoV-2 variants. This innovative approach offers potential advantages over traditional spike-protein vaccines by providing durable protection and targeting emerging variants to curb virus transmission. Supported by ORIP (K01OD026529).
Placental Gene Therapy in Nonhuman Primates: A Pilot Study of Maternal, Placental, and Fetal Response to Non-Viral, Polymeric Nanoparticle Delivery of IGF1
Wilson et al., Molecular Human Reproduction. 2024.
https://academic.oup.com/molehr/article/30/11/gaae038/7876288#493719584
This study investigates a novel nanoparticle-mediated gene therapy approach for addressing fetal growth restriction (FGR) in pregnant female nonhuman primates. Using polymer-based nanoparticles delivering a human insulin-like growth factor 1 (IGF1) transgene, the therapy targets the placenta via ultrasound-guided injections. Researchers evaluated maternal, placental, and fetal responses by analyzing tissues, immunomodulatory proteins, and hormones (progesterone and estradiol). Findings highlight the potential of IGF1 nanoparticles to correct placental insufficiency by enhancing fetal growth, providing a groundbreaking advancement for in utero treatments. This research supports further exploration of nonviral gene therapies for improving pregnancy outcomes and combating FGR-related complications. Supported by ORIP (P51OD011106) and NICHD.
Fetal Bone Engraftment Reconstitutes the Immune System in Pigs With Severe Combined Immunodeficiency
Monarch et al., Lab Animal. 2024.
https://pubmed.ncbi.nlm.nih.gov/39289566/
A valuable preclinical model for studying immune-related pathologies is the severe combined immunodeficiency (SCID) pig through modification of recombination activating gene 2 (RAG2) and interleukin-2 receptor-γ (IL2RG). RAG2/IL2RG double knockout SCID pigs are hard to maintain for breeding and long-term studies because their life span is 8 weeks or less. The researchers investigated fetal allograft transplantation derived from immunocompetent pigs as a strategy for reconstituting the immune system of SCID pigs and promoting survival. Following fetal allograft, SCID pigs demonstrated increased levels of lymphocytes. SCID pigs that received the fetal allograft demonstrated improved body condition and extended life span compared with nonrecipient SCID littermates. This study demonstrates the potential use of fetal allograft transplantation to extend the life span of SCID pigs to breeding age to reduce the resources used to maintain this model for biomedical research. Supported by ORIP (U42OD011140, R21OD027062).
Impaired Skeletal Development by Disruption of Presenilin-1 in Pigs and Generation of Novel Pig Models for Alzheimer's Disease
Uh et al., Journal of Alzheimer's Disease. 2024.
https://pubmed.ncbi.nlm.nih.gov/39177593/
This study explored the effects of presenilin 1 (PSEN1) disruption on vertebral malformations in male and female PSEN1 mutant pigs. Researchers observed significant skeletal impairments and early deaths in pigs with a PSEN1 null mutation, mirroring phenotypes seen in mouse models of Alzheimer’s disease (AD). This porcine model provides valuable insights into pathological hallmarks of PSEN1 mutations in AD, offering a robust platform of therapeutic exploration. The findings establish pigs as an essential translational model for AD, enabling advanced studies on pathophysiology and treatment development for human skeletal and neurological conditions. Supported by ORIP (U42OD011140), NHLBI, NIA, NIAID.
Gene Editing of Pigs to Control Influenza A Virus Infections
Kwon et al., Emerging Microbes & Infections. 2024.
https://pubmed.ncbi.nlm.nih.gov/39083026/
A reduction in the efficacy of vaccines and antiviral drugs for combating infectious diseases in agricultural animals has been observed. Generating genetically modified livestock species to minimize susceptibility to infectious diseases is of interest as an alternative approach. The researchers developed a homozygous transmembrane serine protease 2 (TMPRSS2) knockout (KO) porcine model to investigate resistance to two influenza A virus (IAV) subtypes, H1N1 and H3N2. TMPRSS2 KO pigs demonstrated diminished nasal cavity viral shedding, lower viral burden, and reduced microscopic lung pathology compared with wild-type (WT) pigs. In vitro culturing of primary bronchial epithelial cells (PBECs) demonstrated delayed viral replication in TMPRSS2 KO pigs compared with WT pigs. This study demonstrates the potential use of genetically modified pigs to mitigate IAV infections in pigs and limit transmission to humans. Supported by ORIP (U42OD011140), NHLBI, NIAID, and NIGMS.
Large Animal Models Enhance the Study of Crypt-Mediated Epithelial Recovery From Prolonged Intestinal Ischemia Reperfusion Injury
McKinney-Aguirre et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39404771/
Intestinal ischemia and reperfusion injury (IRI) is a severe pathological alteration that compromises the intestinal epithelial barrier, causing bacterial translocation, shock, sepsis, and potentially death. Preclinical research for IRI has focused on utilizing murine models, but mice demonstrate key anatomical and physiological intestinal differences from humans, such as tissue enzymes, intestinal permeability, and hypoxic response pathways. The researchers compared a 3-hour IRI porcine model to a 3-hour IRI murine model to reveal which demonstrated a stronger translational capacity. Both models demonstrated crypt damage, but only the porcine model showed recovery-associated crypt death expansion and re-epithelialization. At 72 hours post-IRI, mouse mortality was 84.6%, whereas porcine mortality was 0%. A porcine model would be more reliable for future translational studies focused on understanding IRI mechanisms for diagnosis and therapy advancements. Supported by ORIP (T32OD011130, K01OD010199, R03OD026598) and NIDDK.
Amphiphilic Shuttle Peptide Delivers Base Editor Ribonucleoprotein to Correct the CFTR R553X Mutation in Well-Differentiated Airway Epithelial Cells
Kulhankova et al., Nucleic Acids Research. 2024.
https://academic.oup.com/nar/article/52/19/11911/7771564?login=true
Effective translational delivery strategies for base editing applications in pulmonary diseases remain a challenge because of epithelial cells lining the intrapulmonary airways. The researchers demonstrated that the endosomal leakage domain (ELD) plays a crucial role in gene editing ribonucleoprotein (RNP) delivery activity. A novel shuttle peptide, S237, was created by flanking the ELD with poly glycine-serine stretches. Primary airway epithelia with the cystic fibrosis transmembrane conductance regulator (CFTR) R533X mutation demonstrated restored CFTR function when treated with S237-dependent ABE8e-Cas9-NG RNP. S237 outperformed the S10 shuttle peptide at Cas9 RNP delivery in vitro and in vivo using primary human bronchial epithelial cells and transgenic green fluorescent protein neonatal pigs. This study highlights the efficacy of S237 peptide–mediated RNP delivery and its potential as a therapeutic tool for the treatment of cystic fibrosis. Supported by ORIP (U42OD027090, U42OD026635), NCATS, NHGRI, NHLBI, NIAID, NIDDK, and NIGMS.
Administration of Anti-HIV-1 Broadly Neutralizing Monoclonal Antibodies With Increased Affinity to Fcγ Receptors During Acute SHIV AD8-EO Infection
Dias et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-51848-y
Anti-HIV broadly neutralizing antibodies (bNAbs) mediate virus neutralization and antiviral effector functions through Fab and Fc domains, respectively. This study investigated the efficacy of wild-type (WT) bNAbs and modified bNAbs with enhanced affinity for Fcγ receptors (S239D/I332E/A330L [DEL]) after acute simian-HIVAD8-EO (SHIVAD8-EO) infection in male and female rhesus macaques. The emergence of the virus in the plasma and lymph nodes occurred earlier in macaques given DEL bNAbs than in those given WT bNAbs. Overall, the administration of DEL bNAbs revealed higher levels of immune responses. The results suggest that bNAbs with an enhanced Fcγ receptor affinity offer a potential therapeutic strategy by targeting HIV more effectively during early infection stages. Supported by ORIP (P40OD028116), NCI, and NIAID.
Systematic Multi-trait AAV Capsid Engineering for Efficient Gene Delivery
Eid et al., Nature Communications. 2024.
https://doi.org/10.1038/s41467-024-50555-y
Engineering novel functions into proteins while retaining desired traits is a key challenge for developers of viral vectors, antibodies, and inhibitors of medical and industrial value. In this study, investigators developed Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait adeno-associated virus (AAV) capsids. Fit4Function was used to generate reproducible screening data from a capsid library that samples the entire manufacturable sequence space. The Fit4Function data were used to train accurate sequence-to-function models, which were combined to develop a library of capsid candidates. Compared to AAV9, top candidates from the Fit4Function capsid library exhibited comparable production yields; more efficient murine liver transduction; up to 1,000-fold greater human hepatocyte transduction; and increased enrichment in a screen for liver transduction in macaques. The Fit4Function strategy enables prediction of peptide-modified AAV capsid traits across species and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Supported by ORIP (P51OD011107, U42OD027094), NIDDK, NIMH, and NINDS.
Anti–PD-1 Chimeric Antigen Receptor T Cells Efficiently Target SIV-Infected CD4+ T Cells in Germinal Centers
Eichholtz et al., The Journal of Clinical Investigation. 2024.
https://pubmed.ncbi.nlm.nih.gov/38557496/
Researchers conducted adoptive transfer of anti–programmed cell death protein 1 (PD-1) chimeric antigen receptor (CAR) T cells in simian immunodeficiency virus (SIV)–infected rhesus macaques of both sexes on antiretroviral therapy (ART). In some macaques, anti–PD-1 CAR T cells expanded and persisted concomitant with the depletion of PD-1+ memory T cells—including lymph node CD4+ follicular helper T cells—associated with depletion of SIV RNA from the germinal center. Following CAR T infusion and ART interruption, SIV replication increased in extrafollicular portions of lymph nodes, plasma viremia was higher, and disease progression accelerated, indicating that anti–PD-1 CAR T cells depleted PD-1+ T cells and eradicated SIV from this immunological sanctuary. Supported by ORIP (U42OD011123, U42OD010426, P51OD010425, P51OD011092), NCI, NIAID, and NIDDK.