Selected Grantee Publications
- Clear All
- 142 results found
- Rodent Models
The Power of the Heterogeneous Stock Rat Founder Strains in Modeling Metabolic Disease
Wagner et al., Endocrinology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37882530/
Metabolic diseases are a host of complex conditions, including obesity, diabetes mellitus, and metabolic syndrome. Endocrine control systems (e.g., adrenals, thyroid, gonads) are causally linked to metabolic health outcomes. In this study, investigators determined novel metabolic and endocrine health characteristics in both sexes of six available substrains similar to the N/NIH Heterogeneous Stock (HS) rat founders. This deep-phenotyping protocol provides new insight into the exceptional potential of the HS rat population to model complex metabolic health states. The following hypothesis was tested: The genetic diversity in the HS rat founder strains represents a range of endocrine health conditions contributing to the diversity of cardiometabolic disease risks exhibited in the HS rat population. Supported by ORIP (R24OD024617), NHLBI, NIGMS and NIDDK.
Interferon Regulatory Factor 7 Modulates Virus Clearance and Immune Responses to Alphavirus Encephalomyelitis
Troisi et al., Journal of Virology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37772825/
Interferon regulatory factor 7 (IRF7)–deficient mice develop fatal paralysis after CNS infection with Sindbis virus, while wild-type mice recover. Irf7-/- mice produce low levels of IFN-α but high levels of IFN-β with induction of IFN-stimulated genes, so the reason for this difference is not understood. The current study shows that Irf7-/- mice developed inflammation earlier but failed to clear virus from motor neuron–rich regions of the brainstem and spinal cord. Therefore, IRF7 is either necessary for the neuronal response to currently identified mediators of clearance or enables the production of additional antiviral factor(s) needed for clearance. Supported by ORIP (T32OD011089, R01OD01026529) NINDS, and NIAID.
AZD5582 Plus SIV-Specific Antibodies Reduce Lymph Node Viral Reservoirs in Antiretroviral Therapy–Suppressed Macaques
Dashti et al., Nature Medicine. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579098/
Researchers are interested in targeting the HIV reservoir via a latency reversal and clearance approach. Previously, investigators demonstrated that AZD5582 induces systemic latency reversal in rhesus macaques and humanized mice, but a consistent reduction in the viral reservoir was not observed. In the current study, they combined AZD5582 with four simian immunodeficiency virus (SIV)–specific rhesus monoclonal antibodies using rhesus macaques of both sexes. They reported a reduction in total and replication-competent SIV DNA in lymph node–derived CD4+ T cells in the treated macaques. These findings provide proof of concept for the potential of the latency reversal and clearance HIV cure strategy. Supported by ORIP (P51OD011132, R01OD011095), NIAID, NCI, and NHLBI.
The Eotaxin-1/CCR3 Axis and Matrix Metalloproteinase-9 Are Critical in Anti-NC16A IgE-Induced Bullous Pemphigoid
Jordan et al., Journal of Immunology. 2023.
Bullous pemphigoid is associated with eosinophilic inflammation and circulating and tissue-bound IgG and IgE autoantibodies. Researchers previously established the pathogenicity of anti-NC16A IgE through passive transfer of patient-derived autoantibodies to double-humanized mice. In this study, they characterized the molecular and cellular events that underlie eosinophil recruitment and eosinophil-dependent tissue injury. Their work establishes the eotaxin-1/CCR3 axis and matrix metalloproteinase-9 as key players in the disease and as candidate therapeutic targets for drug development and testing. Supported by ORIP (T32OD011130) and NIAMS.
Host-Derived Growth Factors Drive ERK Phosphorylation and MCL1 Expression to Promote Osteosarcoma Cell Survival During Metastatic Lung Colonization
McAloney et al., Cellular Oncology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37676378/
Mortality from osteosarcoma is closely linked to lung metastasis, even though the lung appears to be a hostile environment for tumor cells. Using female mice, researchers assessed changes in both host and tumor cells during colonization. Their findings suggest that the mitogen-activated protein kinase (MAPK) pathway is significantly elevated in early and established metastases, which correlates with expression of anti-apoptotic genes (e.g., MCL1). The authors conclude that niche-derived growth factors drive increased MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. This gene is a promising target for future therapeutic development. Supported by ORIP (K01OD031811), NCI, and NCATS.
Intestinal Microbiota Controls Graft-Versus-Host Disease Independent of Donor–Host Genetic Disparity
Koyama et al., Immunity. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480848/
Allogeneic hematopoietic stem cell transplantation is a curative therapy for hematopoietic malignancies and non-malignant diseases, but acute graft-versus-host disease (GVHD) remains a serious complication. Specifically, severe gut GVHD is the major cause of transplant-related mortality. Here, the authors show that genetically identical mice, sourced from different vendors, had distinct commensal bacterial compositions, which resulted in significantly discordant severity in GVHD. These studies highlight the importance of pre-transplant microbiota composition for the initiation and suppression of immune-mediated pathology in the gastrointestinal tract, demonstrating the impact of non-genetic environmental determinants to transplant outcome. Supported by ORIP (S10OD028685), NIA, NCI, and NHLBI.
A Gut-Restricted Glutamate Carboxypeptidase II Inhibitor Reduces Monocytic Inflammation and Improves Preclinical Colitis
Peters et al., Science Translational Medicine. 2023.
https://www.science.org/doi/10.1126/scitranslmed.abn7491
Many patients with moderate-to-severe inflammatory bowel disease (IBD) do not have adequate disease control, and glutamate carboxypeptidase II (GCPII) offers a promising target for therapeutic development. Researchers generated a class of GCPII inhibitors. They demonstrated that the inhibitor reduced monocytic inflammation in mice and protected against the loss of barrier integrity in primary human colon epithelial air–liquid interface monolayers. Their findings suggest that local inhibition of GCPII could be applied for the development of IBD therapeutics. Supported by ORIP (K01OD030517, T32OD011089), NIGMS, and NCCIH.
The Contribution of Maternal Oral, Vaginal, and Gut Microbiota to the Developing Offspring Gut
Russell et al., Scientific Reports. 2023.
https://www.nature.com/articles/s41598-023-40703-7#Ack1
The maturation process of the gut microbiota (GM) is an essential process for life-long health that is defined by the acquisition and colonization of microorganisms in the gut and the subsequent immune system induction that occurs during early life. To address significant knowledge gaps in this area, investigators characterized the neonatal fecal and ileal microbiota of entire litters of mice at multiple pre-weaning time-points. Results indicated that specific-pathogen-free mouse microbiotas undergo a dynamic and somewhat characteristic maturation process, culminating by roughly two to three weeks of age. Prior to that, the neonatal GM is more similar in composition to the maternal oral microbiota, as opposed to the vaginal and fecal microbiotas. Further studies are needed to expand our knowledge regarding the effect of these developmental exposures on host development. Supported by ORIP (U42OD010918, R03OD028259).
A Germ-Free Humanized Mouse Model Shows the Contribution of Resident Microbiota to Human-Specific Pathogen Infection
Wahl et al., Nature Biotechnology. 2023.
https://www.nature.com/articles/s41587-023-01906-5
Germ-free (GF) mice are of limited value in the study of human-specific pathogens because they do not support their replication. In this report, investigators developed a GF humanized mouse model using the bone marrow–liver–thymus platform to provide a robust and flexible in vivo model that can be used to study the role of resident microbiota in human health and disease. They demonstrated that resident microbiota promote viral acquisition and pathogenesis by using two human-specific pathogens, Epstein–Barr virus and HIV. Supported by ORIP (P40OD010995), FIC, NIAID, NCI, and NIDDK.
Focused Ultrasound–Mediated Brain Genome Editing
Lao et al., PNAS. 2023.
https://www.pnas.org/doi/epdf/10.1073/pnas.2302910120
Gene editing in the brain has been challenging because of the restricted transport imposed by the blood–brain barrier (BBB). In this study, investigators described a safe and effective gene‑editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR machinery to the brain in mice. By combining FUS with adeno-associated virus–mediated gene delivery, researchers can achieve more than 25% editing efficiency of particular cell types. This method has the potential to expand toolkit options for CRISPR delivery and opens opportunities for treating diseases of the brain, such as neurodegenerative disorders, with somatic genome editing. Supported by ORIP (U42OD026635) and NINDS.