Selected Grantee Publications
- Clear All
- 23 results found
- Rodent Models
- 2022
Using the Autofluorescence Finder on the Sony ID7000TM Spectral Cell Analyzer to Identify and Unmix Multiple Highly Autofluorescent Murine Lung Populations
Wanner et al., Frontiers in Bioengineering and Biotechnology. 2022.
https://www.doi.org/10.3389/fbioe.2022.827987
The investigators explored a new imaging approach to detect faint fluorescent signals that are masked in the background of cell types that emit high‑intensity autofluorescence (AF) signals in a flow cytometry panel. Using a novel AF finder tool on the Sony ID7000™ spectral cell analyzer, the investigators studied multiple AF subsets in complex and heterogeneous murine lung single-cell suspensions. Major immune and lung tissue resident cells in a murine model of asthma were easily identified in a multicolor panel using AF subtraction. The findings demonstrate the practicality of the AF finder tool, particularly when analyzing samples with multiple AF populations of varying intensities, to reduce fluorescence background and increase signal resolution in spectral flow cytometry. Supported by ORIP (S10OD025207) and NHLBI.
Progression and Resolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Golden Syrian Hamsters
Mulka et al., The American Journal of Pathology. 2022.
https://www.doi.org/10.1016/j.ajpath.2021.10.009
To catalyze SARS-CoV-2 research, disease progression was characterized in a robust model. Male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 to track clinical, pathology, virology, and immunology outcomes. Inoculated animals lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses dominated in the lung. These lesions resolved over time. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19. Supported by ORIP (T32OD011089).
AAV5 Delivery of CRISPR-Cas9 Supports Effective Genome Editing in Mouse Lung Airway
Liang et al., Molecular Therapy. 2022.
https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(21)00530-X
Genome editing in the lung has the potential to provide long-term expression of therapeutic protein to treat lung genetic diseases. The authors illustrated that AAV5 can efficiently deliver CRISPR-Cas9 to mouse lung airways and was the first to achieve ∼20% editing efficiency in those airways. Results were confirmed through independent experiments at two different institutes. This highly efficient dual AAV platform will facilitate the study of genome editing in the lung and other tissue types. Supported by ORIP (U42OD026645).