Selected Grantee Publications
- Clear All
- 17 results found
- Rodent Models
- Infectious Diseases
- Genetics
Quorum Sensing LuxR Proteins VjbR and BabR Jointly Regulate Brucella abortus Survival During Infection
Caudill et al., Journal of Bacteriology. 2025.
https://pubmed.ncbi.nlm.nih.gov/40013834
Brucella abortus is a zoonotic bacterial pathogen that causes brucellosis, a persistent chronic infection that is globally endemic. B. abortus uses quorum sensing to escape immune clearance attempts, regulate virulence, and cause persistent infection within hosts. B. abortus quorum sensing system comprises two LuxR proteins, VjbR and BabR, as well as two signals, dodecanoyl (C12 AHL) and 3-oxododecanoyl (3-OXO-C12 AHL) homoserine lactone. Using chronic infection 6- to 7-week-old C57Bl/6 and BALB/c male and female mouse models, researchers found that the ΔvjbRΔbabR double-deletion strain was attenuated compared with single mutants. These results demonstrate that both quorum sensing proteins, VjbR and BabR, coordinate to maintain survival. This study helps further characterize the Brucella quorum sensing systems and indicates that further attention should be given to the joint interactions between VjbR and BabR in controlling virulence. Supported by ORIP (T32OD028239) and NIAID.
Prostatic Escherichia coli Infection Drives CCR2-Dependent Recruitment of Fibrocytes and Collagen Production
Scharpf et al., Disease Models & Mechanisms. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11789281
In men, lower urinary tract dysfunction (LUTD) is commonly linked to prostatic collagen accumulation through inflammation-mediated mechanisms. Researchers used 8- to 10-week-old male reporter mice, exposed to either sterile phosphate buffered saline (PBS) or Escherichia coli, to identify that circulating Lyz2+S100a4+Gli1+ myeloid-derived cells are recruited to the prostate to drive inflammation and collagen synthesis. Researchers also used 8- to 10-week-old male Ccr2‑/ - null and Ccr2+/- control mice, exposed to either sterile PBS or E. coli, to determine if Ccr2 is necessary for the fibrotic response to prostatic uropathogen infection. Results demonstrated that CCR2+ cells mediate the collagen abundance and fibrotic response to prostate inflammation. This study elucidates the cell types underlying prostate fibrosis and can be utilized to develop targeted therapies. Supported by ORIP (T32OD010957), NCI, NIDDK, and NIEHS.
A Murine Model of Trypanosoma brucei-Induced Myocarditis and Cardiac Dysfunction
Crilly et al., Microbiology Spectrum. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11792545
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases, HAT and AAT, respectively. Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models for T. brucei infection. A clinically relevant, reproducible murine model for T. brucei–associated cardiomyopathy is currently unavailable. The researchers developed a 7- to 10-week-old C57Bl/6J male and female mouse model for T. brucei infection that demonstrates myocarditis, elevated serum levels of NT-proBNP, and electrocardiographic abnormalities, recapitulating the clinical features of infection. The results demonstrate the importance of interstitial space in T. brucei colonization and provide a relevant, reproducible murine model to investigate the pathogenesis and potential therapeutics of T. brucei-mediated heart damage. Supported by ORIP (T32OD011089, S10OD026859), NCI, and NIA.
A Single-Dose Intranasal Live-Attenuated Codon Deoptimized Vaccine Provides Broad Protection Against SARS-CoV-2 and Its Variants
Liu et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39187479
Researchers developed an intranasal, single-dose, live-attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) vaccine (CDO-7N-1) using codon deoptimization. This vaccine demonstrates broad protection against SARS-CoV-2 variants, with highly attenuated replication and minimal lung pathology across multiple in vivo passages. The vaccine induced robust mucosal and systemic neutralizing antibodies, as well as T-cell responses, in male and female hamsters, female K18-hACE2 mice, and male HFH4-hACE2 mice. In male and female cynomolgus macaques, CDO-7N-1 effectively prevented infection, reduced severe disease, and limited transmission of SARS-CoV-2 variants. This innovative approach offers potential advantages over traditional spike-protein vaccines by providing durable protection and targeting emerging variants to curb virus transmission. Supported by ORIP (K01OD026529).
Engineered Deletions of HIV Replicate Conditionally to Reduce Disease in Nonhuman Primates
Pitchai et al., Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39116226/
Current antiretroviral therapy (ART) for HIV is limited by the necessity for continuous administration. Discontinuation of ART leads to viral rebound. A therapeutic interfering particle (TIP) was developed as a novel single-administration HIV therapy using defective interfering particles. TIP treatment in two humanized mouse models demonstrated a significant reduction in HIV viral load. TIP intervention was completed 24 hours prior to a highly pathogenic simian immunodeficiency virus (SIV) challenge in a nonhuman primate (NHP) rhesus macaque infant model. Compared to untreated SIV infection, NHPs that received TIP treatment displayed no visible signs of SIV-induced AIDS and exhibited improved seroconversion and a significant survival advantage to the 30-week clinical endpoint. Peripheral blood mononuclear cells isolated from HIV-infected patients showed that TIP treatment reduced HIV outgrowth. This study demonstrates the potential use of a single-administration TIP for HIV treatment. Supported by ORIP (P51OD011092, U42OD010426), NCI, NIAID, and NIDA.
Comparison of the Immunogenicity of mRNA-Encoded and Protein HIV-1 Env-ferritin Nanoparticle Designs
Mu et al., Journal of Virology. 2024.
https://journals.asm.org/doi/10.1128/jvi.00137-24
Inducing broadly neutralizing antibodies (bNAbs) against HIV-1 remains a challenge because of immune system limitations. This study compared the immunogenicity of mRNA-encoded membrane-bound envelope (Env) gp160 to HIV-1 Env-ferritin nanoparticle (NP) technology in inducing anti-HIV-1 bNAbs. Membrane-bound mRNA encoding gp160 was more immunogenic than the Env-ferritin NP design in DH270 UCA KI mice, but at lower doses. These results suggest further analysis of mRNA design expression and low-dose immunogenicity studies are necessary for anti-HIV-1 bNAbs. Supported by ORIP (P40OD012217, U42OD021458) and NIAID.
The Mutant Mouse Resource and Research Center (MMRRC) Consortium: The U.S.-Based Public Mouse Repository System
Agca et al., Mammalian Genome. 2024.
https://link.springer.com/article/10.1007/s00335-024-10070-3
The MMRRC has been the nation’s preeminent public repository and distribution archive of mutant mouse models for 25 years. The Consortium, with support from NIH, facilitates biomedical research by identifying, acquiring, evaluating, characterizing, preserving, and distributing a variety of mutant mouse strains to investigators around the world. Since its inception, the MMRRC has fulfilled more than 20,000 orders from 13,651 scientists at 8,441 institutions worldwide. Today, the MMRRC maintains an archive of mice, cryopreserved embryos and sperm, embryonic stem-cell lines, and murine monoclonal antibodies for nearly 65,000 alleles. The Consortium also provides scientific consultation, technical assistance, genetic assays, microbiome analysis, analytical phenotyping, pathology, husbandry, breeding and colony management, and more. Supported by ORIP (U42OD010918, U42OD010924, U42OD010983).
Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population
Cruz Cisneros et al., Vaccines. 2024.
https://pubmed.ncbi.nlm.nih.gov/38276675/
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. Although host genetic factors are known to affect vaccine efficacy for such respiratory pathogens as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. Investigators used the diversity outbred mouse model to study the effects of genetic variation on vaccine efficiency. Data indicate that variations in vaccine response in mice are heritable, similar to that in human populations. Supported by ORIP (U42OD010924), NIAID, and NIGMS.
Stable HIV Decoy Receptor Expression After In Vivo HSC Transduction in Mice and NHPs: Safety and Efficacy in Protection From SHIV
Li, Molecular Therapy. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124088/
Autologous hematopoietic stem cell (HSC) gene therapy offers a promising HIV treatment strategy, but cost, complexity, and toxicity remain significant challenges. Using female mice and female nonhuman primates (NHPs) (i.e., rhesus macaques), researchers developed an approach based on the stable expression of eCD4-Ig, a secreted decoy protein for HIV and simian–human immunodeficiency virus (SHIV) receptors. Their goals were to (1) assess the kinetics and serum level of eCD4-Ig, (2) evaluate the safety of HSC transduction with helper-dependent adenovirus–eCD4-Ig, and (3) test whether eCD4-Ig expression has a protective effect against viral challenge. They found that stable expression of the decoy receptor was achieved at therapeutically relevant levels. These data will guide future in vivo studies. Supported by ORIP (P51OD010425) and NHLBI.
AZD5582 Plus SIV-Specific Antibodies Reduce Lymph Node Viral Reservoirs in Antiretroviral Therapy–Suppressed Macaques
Dashti et al., Nature Medicine. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579098/
Researchers are interested in targeting the HIV reservoir via a latency reversal and clearance approach. Previously, investigators demonstrated that AZD5582 induces systemic latency reversal in rhesus macaques and humanized mice, but a consistent reduction in the viral reservoir was not observed. In the current study, they combined AZD5582 with four simian immunodeficiency virus (SIV)–specific rhesus monoclonal antibodies using rhesus macaques of both sexes. They reported a reduction in total and replication-competent SIV DNA in lymph node–derived CD4+ T cells in the treated macaques. These findings provide proof of concept for the potential of the latency reversal and clearance HIV cure strategy. Supported by ORIP (P51OD011132, R01OD011095), NIAID, NCI, and NHLBI.