Selected Grantee Publications
- Clear All
- 2 results found
- Rodent Models
- Alzheimer's Disease
- 2023
A Class of Anti-Inflammatory Lipids Decrease with Aging in the Central Nervous System
Tan et al., Nature Chemical Biology. 2023.
https://doi.org/10.1038/s41589-022-01165-6
Impaired lipid metabolism in the brain has been implicated in neurological disorders of aging, yet analyses of lipid pathway changes with age have been lacking. The researchers examined the brain lipidome of mice of both sexes across the lifespan using untargeted lipidomics. They found that 3-sulfogalactosyl diacylglycerols (SGDGs) are structural components of myelin and decline with age in the central nervous system. The researchers discovered that SGDGs also are present in male human and rhesus macaque brains, demonstrating their evolutionary conservation in mammals. The investigators showed that SGDGs possess anti-inflammatory activity, suggesting a potential role for this lipid class in age-related neurodegenerative diseases. Supported by ORIP (P51OD011092), NIA, NCI, NIDDK, and NINDS.
Chronic TREM2 Activation Exacerbates Aβ-Associated Tau Seeding and Spreading
Jain et al., Journal of Experimental Medicine. 2023.
Using a mouse model for amyloidosis in which Alzheimer’s Disease (AD)–associated tau is injected into the brain to induce amyloid β (Aβ)–dependent tau seeding/spreading, investigators found that chronic administration of an activating triggering receptor expressed on myeloid cells 2 (TREM2) antibody increases microglial activation of dystrophic neurites surrounding Aβ plaques (NP) but increases NP-tau pathology and neuritic dystrophy without altering Aβ plaque burden. These data suggest that sustained microglial activation through TREM2 that does not result in strong myeloid removal might exacerbate Aβ-induced tau pathology, which could have important clinical implications. Supported by ORIP (S10OD021629) and NIA.