Selected Grantee Publications
- Clear All
- 12 results found
- Rodent Models
- Vaccines/Therapeutics
- 2023
Stable HIV Decoy Receptor Expression After In Vivo HSC Transduction in Mice and NHPs: Safety and Efficacy in Protection From SHIV
Li, Molecular Therapy. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124088/
Autologous hematopoietic stem cell (HSC) gene therapy offers a promising HIV treatment strategy, but cost, complexity, and toxicity remain significant challenges. Using female mice and female nonhuman primates (NHPs) (i.e., rhesus macaques), researchers developed an approach based on the stable expression of eCD4-Ig, a secreted decoy protein for HIV and simian–human immunodeficiency virus (SHIV) receptors. Their goals were to (1) assess the kinetics and serum level of eCD4-Ig, (2) evaluate the safety of HSC transduction with helper-dependent adenovirus–eCD4-Ig, and (3) test whether eCD4-Ig expression has a protective effect against viral challenge. They found that stable expression of the decoy receptor was achieved at therapeutically relevant levels. These data will guide future in vivo studies. Supported by ORIP (P51OD010425) and NHLBI.
Single-Component Multilayered Self-Assembling Protein Nanoparticles Presenting Glycan-Trimmed Uncleaved Prefusion Optimized Envelope Trimers as HIV-1 Vaccine Candidates
Zhang, Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082823/
Researchers are interested in engineering protein nanoparticles to mimic virus-like particles for an HIV-1 vaccine. In this study, researchers explored a strategy that combines HIV envelope glycoprotein (Env) stabilization, nanoparticle display, and glycan trimming. They designed a panel of constructs for biochemical, biophysical, and structural characterization. Using female mice, female rabbits, and rhesus macaques of both sexes, they demonstrated that glycan trimming increases the frequency of vaccine responders and steers antibody responses away from immunodominant glycan holes and glycan patches. This work offers a potential strategy for overcoming the challenges posed by the Env glycan shield in vaccine development. Supported by ORIP (P51OD011133, P51OD011104, U42OD010442) and NIAID.
Investigation of Monoclonal Antibody CSX-1004 for Fentanyl Overdose
Bremer et al., Nature Communications. 2023.
https://pubmed.ncbi.nlm.nih.gov/38052779/
The opioid crisis in the United States is primarily driven by the highly potent synthetic opioid fentanyl and has led to more than 70,000 overdose deaths annually; thus, new therapies for fentanyl overdose are urgently needed. Here, the authors present the first clinic-ready, fully human monoclonal antibody CSX-1004 with picomolar affinity for fentanyl and related analogs. In mice, CSX-1004 reverses fentanyl antinociception and the intractable respiratory depression caused by the ultrapotent opioid carfentanil. Using a highly translational nonhuman primate model for respiratory depression, they demonstrate CSX-1004-mediated protection from repeated fentanyl challenges for 3–4 weeks. These data establish the feasibility of CSX-1004 as a promising candidate medication for preventing and reversing fentanyl-induced overdose. Supported by ORIP (P40OD010938) and NIDA.
AZD5582 Plus SIV-Specific Antibodies Reduce Lymph Node Viral Reservoirs in Antiretroviral Therapy–Suppressed Macaques
Dashti et al., Nature Medicine. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579098/
Researchers are interested in targeting the HIV reservoir via a latency reversal and clearance approach. Previously, investigators demonstrated that AZD5582 induces systemic latency reversal in rhesus macaques and humanized mice, but a consistent reduction in the viral reservoir was not observed. In the current study, they combined AZD5582 with four simian immunodeficiency virus (SIV)–specific rhesus monoclonal antibodies using rhesus macaques of both sexes. They reported a reduction in total and replication-competent SIV DNA in lymph node–derived CD4+ T cells in the treated macaques. These findings provide proof of concept for the potential of the latency reversal and clearance HIV cure strategy. Supported by ORIP (P51OD011132, R01OD011095), NIAID, NCI, and NHLBI.
A Gut-Restricted Glutamate Carboxypeptidase II Inhibitor Reduces Monocytic Inflammation and Improves Preclinical Colitis
Peters et al., Science Translational Medicine. 2023.
https://www.science.org/doi/10.1126/scitranslmed.abn7491
Many patients with moderate-to-severe inflammatory bowel disease (IBD) do not have adequate disease control, and glutamate carboxypeptidase II (GCPII) offers a promising target for therapeutic development. Researchers generated a class of GCPII inhibitors. They demonstrated that the inhibitor reduced monocytic inflammation in mice and protected against the loss of barrier integrity in primary human colon epithelial air–liquid interface monolayers. Their findings suggest that local inhibition of GCPII could be applied for the development of IBD therapeutics. Supported by ORIP (K01OD030517, T32OD011089), NIGMS, and NCCIH.
Osteopontin Is an Integral Mediator of Cardiac Interstitial Fibrosis in Models of Human Immunodeficiency Virus Infection
Robinson et al., The Journal of Infectious Diseases. 2023.
https://www.doi.org/10.1093/infdis/jiad149
HIV infection is associated with increased risk of cardiovascular disease. Plasma osteopontin (Opn) is correlated with cardiac pathology, but more work is needed to understand the underlying mechanisms driving cardiac fibrosis. Researchers explored this topic using mouse embryonic fibroblasts, male macaques, and humanized mice of both sexes. They reported the accumulation of Opn in the heart with simian immunodeficiency virus infection. Systemic inhibition of Opn can prevent HIV-associated interstitial fibrosis in the left ventricle. These findings suggest that Opn could be a potential target for adjunctive therapies to reduce cardiac fibrosis in people with HIV. Supported by ORIP (P51OD011104), NIAID, NHLBI, NIMH, and NINDS.
p38MAPKα Stromal Reprogramming Sensitizes Metastatic Breast Cancer to Immunotherapy
Faget et al., Cancer Discovery. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238649/
This study emphasizes the importance of the metastatic tumor microenvironment in metastatic breast cancer growth and the identification of effective antimetastatic therapies. Using a stromal labeling approach and single-cell RNA sequencing, the authors showed that a combination of p38MAPK inhibition (p38i) and anti-OX40 synergistically reduced metastatic tumor growth and increased overall survival. Further engagement of cytotoxic T cells cured all metastatic disease in mice and produced durable immunologic memory. The Cancer Genome Atlas data analysis revealed that patients with p38i metastatic stromal signature and a high tumor mutational burden (TMB) had increased overall survival. These findings suggest that patients with high TMB would benefit the most from the p38i plus anti-OX40 approach. Supported by ORIP (S10OD028483), NIA, NCI, and NIGMS.
Fc-Mediated Pan-Sarbecovirus Protection After Alphavirus Vector Vaccination
Adams et al., Cell Reports. 2023.
https://pubmed.ncbi.nlm.nih.gov/37000623/
Group 2B β-coronaviruses (i.e., sarbecoviruses) have resulted in regional and global epidemics. Here, the authors evaluate the mechanisms of cross-sarbecovirus protective immunity using a panel of alphavirus-vectored vaccines covering bat to human strains. They reported that vaccination does not prevent virus replication, but it protects against lethal heterologous disease outcomes in SARS-CoV-2 and clade 2 bat sarbecovirus challenge models. Full-length spike vaccines elicited the broadest pan-sarbecovirus protection. Additionally, antibody-mediated cross-protection was lost in absence of FcR function, supporting a model for non-neutralizing, protective antibodies. Taken together, these findings highlight the value of universal sarbecovirus vaccine designs that couple FcR-mediated cross-protection with potent cross-neutralizing antibody responses. Supported by ORIP (K01OD026529), NIAID, and NCI.
Spike and Nsp6 Are Key Determinants of SARS-CoV-2 Omicron BA.1 Attenuation
Chen et al., Nature. 2023.
https://pubmed.ncbi.nlm.nih.gov/36630998/
The ability of the SARS-CoV-2 virus to mutate and create variants of concern demands new vaccines to control the COVID-19 pandemic. The SARS-CoV-2 Omicron variant was shown to be more immune evasive and less virulent than current major variants. The spike (S) protein in this variant carries many mutations that drive these phenotypes. Researchers generated a chimeric recombinant SARS-CoV-2 virus encoding the S gene of Omicron (BA.1 lineage) in an ancestral SARS-CoV-2 isolate and compared it with the naturally circulating Omicron variant. The Omicron S-bearing virus escaped vaccine-induced humoral immunity, owing to mutations in the receptor-binding motif. The recombinant virus replicated efficiently in distal lung cell lines and in K18-hACE2 mice. Moreover, mutations induced in non-structural protein 6 (nsp6) in addition to the S protein were sufficient to restate the attenuated phenotype of Omicron. These findings indicate that the pathogenicity of Omicron is determined by mutations both inside and outside of the S gene. Supported by ORIP (S10OD026983, S10OD030269).
In-Depth Virological and Immunological Characterization of HIV-1 Cure after CCR5A32/A32 Allogeneic Hematopoietic Stem Cell Transplantation
Jensen et al., Nature Medicine. 2023.
https://pubmed.ncbi.nlm.nih.gov/36807684/
Evidence suggests that CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) can cure HIV-1, but the immunological and virological correlates are unknown. Investigators performed a longitudinal virological and immunological analysis of the peripheral blood and tissue compartments of a 53-year-old male patient more than 9 years after CCR5Δ32/Δ32 allogeneic HSCT and 48 months after analytical treatment interruption. Sporadic traces of HIV-1 DNA were detected in peripheral T cell subsets and tissue-derived samples, but repeated ex vivo quantitative and in vivo outgrowth assays in humanized mice of both sexes did not reveal replication-competent virus. This case provides new insights that could guide future cure strategies. Supported by ORIP (P51OD011092) and NIAID.