Selected Grantee Publications
- Clear All
- 20 results found
- Rodent Models
- Alzheimer's Disease
- COVID-19/Coronavirus
Senescent-like Microglia Limit Remyelination Through the Senescence Associated Secretory Phenotype
Gross et al., Nature Communications. 2025.
https://www.nature.com/articles/s41467-025-57632-w
Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disease in which immune cells infiltrate the central nervous system and promote deterioration of myelin and neurodegeneration. The capacity to regenerate myelin in the central nervous system diminishes with age. In this study, researchers used 2- to 3-month-old (young), 12-month-old (middle-aged), and 18- to 22-month-old (aged) C57BL/6 male and female mice. Results showed an upregulation of the senescence marker P16ink4a (P16) in microglial and macrophage cells within demyelinated lesions. Notably, treatment of senescent cells using genetic and pharmacological senolytic methods leads to enhanced remyelination in young and middle-aged mice but fails to improve remyelination in aged mice. These results suggest that therapeutic targeting of senescence-associated secretory phenotype components may improve remyelination in aging and MS. Supported by ORIP (R24OD036199), NIA, NINDS, and NIMH.
Suppressing APOE4-Induced Neural Pathologies by Targeting the VHL-HIF Axis
Jiang et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39874294
The ε4 variant of human apolipoprotein E (APOE4) is a major genetic risk factor for Alzheimer’s disease and increases mortality and neurodegeneration. Using Caenorhabditis elegans and male APOE-expressing mice, researchers determined that the Von Hippel-Lindau 1 (VHL-1) protein is a key modulator of APOE4-induced neural pathologies. This study demonstrated protective effects of the VHL-1 protein; the loss of this protein reduced APOE4-associated neuronal and behavioral damage by stabilizing hypoxia-inducible factor 1 (HIF-1), a transcription factor that protects against cellular stress and injury. Genetic VHL-1 inhibition also mitigated cerebral vascular injury and synaptic damage in APOE4-expressing mice. These findings suggest that targeting the VHL–HIF axis in nonproliferative tissues could reduce APOE4-driven mortality and neurodegeneration. Supported by ORIP (R24OD010943, R21OD032463, P40OD010440), NHGRI, NIA, and NIGMS.
Establishing the Hybrid Rat Diversity Program: A Resource for Dissecting Complex Traits
Dwinell et al., Mammalian Genome. 2025.
https://pubmed.ncbi.nlm.nih.gov/39907792
Rat models have been extensively used for studying human complex disease mechanisms, behavioral phenotypes, and environmental factors and for discovering and developing drugs. Systems genetics approaches have been used to study the effects of both genetic variation and environmental factors. This approach recognizes the complexity of common disorders and uses intermediate phenotypes to find relationships between genetic variation and clinical traits. This article describes the Hybrid Rat Diversity Program (HDRP) at the Medical College of Wisconsin, which involves 96 inbred rat strains and aims to provide a renewable and reusable resource in terms of the HRDP panel of inbred rat strains, the genomic data derived from the HRDP strains, and banked resources available for additional studies. Supported by ORIP (R24OD024617) and NHLBI.
Multimodal Analysis of Dysregulated Heme Metabolism, Hypoxic Signaling, and Stress Erythropoiesis in Down Syndrome
Donovan et al., Cell Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/39120971
Down syndrome (DS), a genetic condition caused by the presence of an extra copy of chromosome 21, is characterized by intellectual and developmental disability. Infants with DS often suffer from low oxygen saturation, and DS is associated with obstructive sleep apnea. Investigators assessed the role that hypoxia plays in driving health conditions that are comorbid with DS. A multiomic analysis showed that people with DS exhibit elevated heme metabolism and activated stress erythropoiesis, which are indicators of chronic hypoxia; these results were recapitulated in a mouse model for DS. This study identified hypoxia as a possible mechanism underlying several conditions that co-occur with DS, including congenital heart defects, seizure disorders, autoimmune disorders, several leukemias, and Alzheimer's disease. Supported by ORIP (R24OD035579), NCATS, NCI, and NIAID.
A Single-Dose Intranasal Live-Attenuated Codon Deoptimized Vaccine Provides Broad Protection Against SARS-CoV-2 and Its Variants
Liu et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39187479
Researchers developed an intranasal, single-dose, live-attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) vaccine (CDO-7N-1) using codon deoptimization. This vaccine demonstrates broad protection against SARS-CoV-2 variants, with highly attenuated replication and minimal lung pathology across multiple in vivo passages. The vaccine induced robust mucosal and systemic neutralizing antibodies, as well as T-cell responses, in male and female hamsters, female K18-hACE2 mice, and male HFH4-hACE2 mice. In male and female cynomolgus macaques, CDO-7N-1 effectively prevented infection, reduced severe disease, and limited transmission of SARS-CoV-2 variants. This innovative approach offers potential advantages over traditional spike-protein vaccines by providing durable protection and targeting emerging variants to curb virus transmission. Supported by ORIP (K01OD026529).
Characterization of Collaborative Cross Mouse Founder Strain CAST/EiJ as a Novel Model for Lethal COVID-19
Baker et al., Scientific Reports. 2024.
https://www.nature.com/articles/s41598-024-77087-1
Researchers characterized the Collaborative Cross (CC) mouse model founder strain CAST/EiJ as a novel model for severe COVID-19, exhibiting high viral loads and mortality. By leveraging genetically diverse CC strains, this study identified variations in susceptibility and survival against SARS-CoV-2 variants. CAST/EiJ mice developed lung pathology and mortality despite antiviral defenses, making them a valuable tool for understanding host–pathogen interactions. The findings emphasize the utility of diverse animal models in uncovering genetic and immunological factors that influence disease outcomes, facilitating the development of targeted therapies against COVID-19 to mitigate future pandemics. Supported by ORIP (P40OD011102).
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.
Pathogenesis and Virulence of Coronavirus Disease: Comparative Pathology of Animal Models for COVID-19
Kirk et al., Virulence. 2024.
https://pubmed.ncbi.nlm.nih.gov/38362881
Researchers have used animal models that can replicate clinical and pathologic features of severe human coronavirus infections to develop novel vaccines and therapeutics in humans. The purpose of this review is to describe important animal models for COVID-19, with an emphasis on comparative pathology. The highlighted species included mice, ferrets, hamsters, and nonhuman primates. Knowledge gained from studying these animal models can help inform appropriate model selection for disease modeling, as well as for vaccine and therapeutic developments. Supported by ORIP (T32OD010993) and NIAID.
Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population
Cruz Cisneros et al., Vaccines. 2024.
https://pubmed.ncbi.nlm.nih.gov/38276675/
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. Although host genetic factors are known to affect vaccine efficacy for such respiratory pathogens as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. Investigators used the diversity outbred mouse model to study the effects of genetic variation on vaccine efficiency. Data indicate that variations in vaccine response in mice are heritable, similar to that in human populations. Supported by ORIP (U42OD010924), NIAID, and NIGMS.
Fc-Mediated Pan-Sarbecovirus Protection After Alphavirus Vector Vaccination
Adams et al., Cell Reports. 2023.
https://pubmed.ncbi.nlm.nih.gov/37000623/
Group 2B β-coronaviruses (i.e., sarbecoviruses) have resulted in regional and global epidemics. Here, the authors evaluate the mechanisms of cross-sarbecovirus protective immunity using a panel of alphavirus-vectored vaccines covering bat to human strains. They reported that vaccination does not prevent virus replication, but it protects against lethal heterologous disease outcomes in SARS-CoV-2 and clade 2 bat sarbecovirus challenge models. Full-length spike vaccines elicited the broadest pan-sarbecovirus protection. Additionally, antibody-mediated cross-protection was lost in absence of FcR function, supporting a model for non-neutralizing, protective antibodies. Taken together, these findings highlight the value of universal sarbecovirus vaccine designs that couple FcR-mediated cross-protection with potent cross-neutralizing antibody responses. Supported by ORIP (K01OD026529), NIAID, and NCI.