Selected Grantee Publications
- Clear All
- 4 results found
- Rodent Models
- nimh
- 2021
AAV Capsid Variants with Brain-Wide Transgene Expression and Decreased Liver Targeting After Intravenous Delivery in Mouse and Marmoset
Goertsen et al., Nature Neuroscience. 2021.
https://www.nature.com/articles/s41593-021-00969-4
Genetic intervention is increasingly being explored as a therapeutic option for debilitating disorders of the central nervous system (CNS). This project focused on organ-specific targeting of adeno-associated virus (AAV) capsids after intravenous delivery. These results constitute an important step forward toward achieving the goal of engineered AAV vectors that can be used to broadly deliver gene therapies to the CNS in humans. Supported by ORIP (U24OD026638), NIMH, and NINDS.
Comparative Cellular Analysis of Motor Cortex in Human, Marmoset and Mouse
Bakken et al., Nature. 2021.
https://pubmed.ncbi.nlm.nih.gov/34616062/
Investigators used high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmosets, and mice, to characterize the cellular makeup of the primary motor cortex (M1), which exhibits similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. Despite the overall conservation, many species-dependent specializations are apparent. These results demonstrate the robust molecular foundations of cell-type diversity in M1 across mammals and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations. Supported by ORIP (P51OD010425), NIMH, NCATS, NINDS, and NIDA.
A Participant-Derived Xenograft Model of HIV Enables Long-Term Evaluation of Autologous Immunotherapies
McCann et al., Journal of Experimental Medicine. 2021.
https://doi.org/10.1084/jem.20201908
HIV-specific CD8+ T cells partially control viral replication but rarely provide lasting protection due to immune escape. Investigators showed that engrafting NSG mice with memory CD4+ T cells from HIV+ donors enables evaluation of autologous T cell responses while avoiding graft-versus-host disease. Treating HIV-infected mice with clinically relevant T cell products reduced viremia. In vivo activity was significantly enhanced when T cells were engineered with surface-conjugated nanogels carrying an Interleukin-15 superagonist but was ultimately limited by the pervasive selection of escape mutations, recapitulating human patterns. This “participant-derived xenograft” model provides a powerful tool for developing T cell-based therapies for HIV. Supported by ORIP (R01OD011095), NIAID, NIDA, NIMH, NINDS, and NCATS.
The High Affinity Dopamine D2 Receptor Agonist MCL-536: A New Tool for Studying Dopaminergic Contribution to Neurological Disorders
Subburaju et al., ACS Chemical Neuroscience. 2021.
https://pubs.acs.org/doi/full/10.1021/acschemneuro.1c00094
The dopamine D2 receptor exists in two different states, D2high and D2low; the former is the functional form of the D2 receptor and associates with intracellular G-proteins. The D2 agonist [3H]MCL-536 has high affinity for the D2 receptor (Kd 0.8 nM) and potently displaces the binding of (R-(-)-N-n-propylnorapomorphine (NPA; Ki 0.16 nM) and raclopride (Ki 0.9 nM) in competition binding assays. The authors characterized [3H]MCL-536. [3H]MCL-536 as metabolically stable. In vitro autoradiography on transaxial and coronal brain sections showed specific binding of [3H]MCL-536. [3H]MCL-536's unique properties make it a valuable tool for research on neurological disorders like Parkinson's disease or schizophrenia. Supported by ORIP (R43OD020186, R44OD024615) and NIMH.