Selected Grantee Publications
- Clear All
- 3 results found
- Rodent Models
- nigms
- 2022
Rapid Joule Heating Improves Vitrification Based Cryopreservation
Zhan et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33546-9
Cryopreservation by vitrification is an effective approach for long-term preservation of biosystems, but effective vitrification often requires high concentrations of cryoprotective agent (CPA), which can be toxic. The investigators described a joule heating–based platform technology for rapid rewarming of biosystems, which allows the use of low concentrations of CPA. They demonstrated the success of this platform in cryopreservation of three model systems: adherent cells, Drosophila melanogaster embryos, and rat kidney slices with low CPA concentrations. This work provides a general solution to cryopreserve a broad spectrum of cells, tissues, organs, and organisms. Supported by ORIP (R21OD028758), NIDDK, NHLBI, and NIGMS.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
Obesity Alters Pathology and Treatment Response in Inflammatory Disease
Bapat et al., Nature. 2022.
https://www.doi.org/10.1038/s41586-022-04536-0
Obesity and metabolic disease have been shown to affect immunotherapeutic outcomes. By studying classical type 2 T helper cells (TH2) in lean and obese male mouse models for atopic dermatitis, investigators found that the biologic therapies protected lean mice but exacerbated disease in obese mice. RNA sequencing and genome analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells in obese mice when compared to lean mice, indicating that PPARγ is required to prevent aberrant non-TH2 inflammation. Understanding the effects of obesity on immunological disease could inform a potential precision medicine approach to target obesity-induced immune dysregulation. Supported by ORIP (S10OD023689), NIAID, NCI, NIDDK, and NIGMS.