Selected Grantee Publications
- Clear All
- 7 results found
- Rodent Models
- nigms
- Infectious Diseases
Functional and Structural Basis of Human Parainfluenza Virus Type 3 Neutralization With Human Monoclonal Antibodies
Suryadevara et al., Nature Microbiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38858594
Human parainfluenza virus type 3 (hPIV3) can cause severe disease in older people and infants, and the haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Researchers isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. They also delineated the structural basis of neutralization for HN and F monoclonal antibodies (mAbs). Rats were protected against infection and disease in vivo by mAbs that neutralized hPIV3 in vitro. This work establishes correlates of protection for hPIV3 and highlights the potential clinical utility of mAbs. Supported by ORIP (K01OD036063), NIAID, and NIGMS.
Vaccination Induces Broadly Neutralizing Antibody Precursors to HIV gp41
Schiffner et al., Nature Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38816615
Primary immunogens that induce rare broadly neutralizing antibody (bnAb) precursor B cells are needed to develop vaccines against viruses of high antigenic diversity. 10E8-class bnAbs must possess a long, heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. Researchers developed germline-targeting epitope scaffolds with an affinity for 10E8-class precursors that exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens. Protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. This study showed that germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features. Supported by ORIP (P51OD011132, U42OD011023), NIAID, and NIGMS.
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.
Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population
Cruz Cisneros et al., Vaccines. 2024.
https://pubmed.ncbi.nlm.nih.gov/38276675/
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. Although host genetic factors are known to affect vaccine efficacy for such respiratory pathogens as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. Investigators used the diversity outbred mouse model to study the effects of genetic variation on vaccine efficiency. Data indicate that variations in vaccine response in mice are heritable, similar to that in human populations. Supported by ORIP (U42OD010924), NIAID, and NIGMS.
Factor XII Plays a Pathogenic Role in Organ Failure and Death in Baboons Challenged with Staphylococcus aureus
Silasi et al., Blood. 2021.
https://pubmed.ncbi.nlm.nih.gov/33598692/
Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model for lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. The authors used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII. Inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms; untreated control animals suffered irreversible multiorgan failure. This study confirms their previous finding that at least two enzymes of FXIa and FXIIa play critical roles in the development of an acute and terminal inflammatory response. Supported by ORIP (P40OD024628), NIAID, NHLBI, and NIGMS.
In Vitro and In Vivo Functions of SARS-CoV-2 Infection-Enhancing and Neutralizing Antibodies
Li et al., Cell. 2021.
https://doi.org/10.1016/j.cell.2021.06.021
Antibody-dependent enhancement of infection is a concern for clinical use of antibodies. Researchers isolated neutralizing antibodies against the receptor-binding domain (RBD) or N-terminal domain (NTD) of SARS-CoV-2 spike from COVID-19 patients. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific binding modes. RBD and NTD antibodies mediated both neutralization and infection enhancement in vitro. However, infusion of these antibodies into mice or macaques resulted in suppression of virus replication, demonstrating that antibody-enhanced infection in vitro does not necessarily predict enhanced infection in vivo. RBD-neutralizing antibodies having cross-reactivity against coronaviruses were protective against SARS-CoV-2, the most potent of which was DH1047. Supported by ORIP (P40OD012217, U42OD021458, S10OD018164), NIAID, NCI, NIGMS, and NIH Common Fund.
Lung Expression of Human Angiotensin-Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection
Han et al., American Journal of Respiratory Cell and Molecular Biology. 2021.
https://doi.org/10.1165/rcmb.2020-0354OC
A rapidly deployable mouse model that recapitulates a disease caused by a novel pathogen would be a valuable research tool during a pandemic. Researchers were able to produce C57BL/6J mice with lung expression of human angiotensin-converting enzyme 2 (hACE2), the receptor for SARS-CoV-2. They did so by oropharyngeal delivery of a recombinant human adenovirus type 5 expressing hACE2. The transduced mice were then infected with SARS-CoV-2. Thereafter, the mice developed interstitial pneumonia with perivascular inflammation, exhibited higher viral load in lungs compared to controls, and displayed a gene expression phenotype resembling the clinical response in lungs of humans with COVID-19. Supported by ORIP (P51OD011104, R21OD024931), NHLBI, and NIGMS.