Selected Grantee Publications
- Clear All
- 17 results found
- Rodent Models
- niaid
- Genetics
Quorum Sensing LuxR Proteins VjbR and BabR Jointly Regulate Brucella abortus Survival During Infection
Caudill et al., Journal of Bacteriology. 2025.
https://pubmed.ncbi.nlm.nih.gov/40013834
Brucella abortus is a zoonotic bacterial pathogen that causes brucellosis, a persistent chronic infection that is globally endemic. B. abortus uses quorum sensing to escape immune clearance attempts, regulate virulence, and cause persistent infection within hosts. B. abortus quorum sensing system comprises two LuxR proteins, VjbR and BabR, as well as two signals, dodecanoyl (C12 AHL) and 3-oxododecanoyl (3-OXO-C12 AHL) homoserine lactone. Using chronic infection 6- to 7-week-old C57Bl/6 and BALB/c male and female mouse models, researchers found that the ΔvjbRΔbabR double-deletion strain was attenuated compared with single mutants. These results demonstrate that both quorum sensing proteins, VjbR and BabR, coordinate to maintain survival. This study helps further characterize the Brucella quorum sensing systems and indicates that further attention should be given to the joint interactions between VjbR and BabR in controlling virulence. Supported by ORIP (T32OD028239) and NIAID.
Multimodal Analysis of Dysregulated Heme Metabolism, Hypoxic Signaling, and Stress Erythropoiesis in Down Syndrome
Donovan et al., Cell Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/39120971
Down syndrome (DS), a genetic condition caused by the presence of an extra copy of chromosome 21, is characterized by intellectual and developmental disability. Infants with DS often suffer from low oxygen saturation, and DS is associated with obstructive sleep apnea. Investigators assessed the role that hypoxia plays in driving health conditions that are comorbid with DS. A multiomic analysis showed that people with DS exhibit elevated heme metabolism and activated stress erythropoiesis, which are indicators of chronic hypoxia; these results were recapitulated in a mouse model for DS. This study identified hypoxia as a possible mechanism underlying several conditions that co-occur with DS, including congenital heart defects, seizure disorders, autoimmune disorders, several leukemias, and Alzheimer's disease. Supported by ORIP (R24OD035579), NCATS, NCI, and NIAID.
Transcriptomic Analysis of Skeletal Muscle Regeneration Across Mouse Lifespan Identifies Altered Stem Cell States
Walter et al., Nature Aging. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578558
Age-related skeletal muscle regeneration dysfunction is poorly understood. Using single-cell transcriptomics and high-resolution spatial transcriptomics, researchers evaluated factors contributing to age-related decline in skeletal muscle regeneration after injury in young, old, and geriatric male and female mice (5, 20, and 26 months old). Eight immune cell types were identified and associated with age-related dynamics and distinct muscle stem cell states specific to old and geriatric tissue. The findings emphasize the role of extrinsic and intrinsic factors, including cellular senescence, in disrupting muscle repair. This study provides a spatial and molecular framework for understanding regenerative decline and cellular heterogeneity in aging skeletal muscle. Supported by ORIP (F30OD032097), NIA, NIAID, NIAMS, NICHD, and NIDA.
Engineered Deletions of HIV Replicate Conditionally to Reduce Disease in Nonhuman Primates
Pitchai et al., Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39116226/
Current antiretroviral therapy (ART) for HIV is limited by the necessity for continuous administration. Discontinuation of ART leads to viral rebound. A therapeutic interfering particle (TIP) was developed as a novel single-administration HIV therapy using defective interfering particles. TIP treatment in two humanized mouse models demonstrated a significant reduction in HIV viral load. TIP intervention was completed 24 hours prior to a highly pathogenic simian immunodeficiency virus (SIV) challenge in a nonhuman primate (NHP) rhesus macaque infant model. Compared to untreated SIV infection, NHPs that received TIP treatment displayed no visible signs of SIV-induced AIDS and exhibited improved seroconversion and a significant survival advantage to the 30-week clinical endpoint. Peripheral blood mononuclear cells isolated from HIV-infected patients showed that TIP treatment reduced HIV outgrowth. This study demonstrates the potential use of a single-administration TIP for HIV treatment. Supported by ORIP (P51OD011092, U42OD010426), NCI, NIAID, and NIDA.
Comparison of the Immunogenicity of mRNA-Encoded and Protein HIV-1 Env-ferritin Nanoparticle Designs
Mu et al., Journal of Virology. 2024.
https://journals.asm.org/doi/10.1128/jvi.00137-24
Inducing broadly neutralizing antibodies (bNAbs) against HIV-1 remains a challenge because of immune system limitations. This study compared the immunogenicity of mRNA-encoded membrane-bound envelope (Env) gp160 to HIV-1 Env-ferritin nanoparticle (NP) technology in inducing anti-HIV-1 bNAbs. Membrane-bound mRNA encoding gp160 was more immunogenic than the Env-ferritin NP design in DH270 UCA KI mice, but at lower doses. These results suggest further analysis of mRNA design expression and low-dose immunogenicity studies are necessary for anti-HIV-1 bNAbs. Supported by ORIP (P40OD012217, U42OD021458) and NIAID.
Evolution of the Clinical-Stage Hyperactive TcBuster Transposase as a Platform for Robust Non-Viral Production of Adoptive Cellular Therapies
Skeate et al., Molecular Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38627969/
In this study, the authors report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieve high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. This proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improved survival in a Burkitt lymphoma xenograft model in vivo. Their work suggests that TcB-M is a versatile, safe, efficient, and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition. Supported by ORIP (F30OD030021), NCI, NHLBI, and NIAID.
Time of Sample Collection Is Critical for the Replicability of Microbiome Analyses
Allaband et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38951660/
Lack of replicability remains a challenge in microbiome studies. As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design will be critical. Researchers conducted a retrospective analysis of 16S amplicon sequencing studies in male mice. They report that sample collection time affects the conclusions drawn from microbiome studies. The lack of consistency in the time of sample collection could help explain poor cross-study replicability in microbiome research. The effect of diurnal rhythms on the outcomes and study designs of other fields is unknown but is likely significant. Supported by ORIP (T32OD017863), NCATS, NCI, NHLBI, NIAAA, NIAID, NIBIB, NIDDK, and NIGMS.
CDK4/6 Inhibition Sensitizes Intracranial Tumors to PD-1 Blockade in Preclinical Models of Brain Metastasis
Nayyer et al., Clinical Cancer Research. 2024.
Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. In this study, investigators evaluated the efficacy of combining CDKi (abemaciclib) and anti–PD-1 therapy (“combination therapy”) in mouse models for brain metastases, elucidated how combination therapy remodeled the tumor–immune microenvironment (TIME) and T-cell receptor (TCR) repertoires, and investigated the effects of CDKi on T-cell development and maintenance in NOD-scid Il2rgnull (NSG) mice engrafted with human immune systems (“humanized mice”). Results offer a strong rationale for the clinical evaluation of combination CDKi and PD-1 blockade in patients with brain metastases. Supported by ORIP (R24OD026440), NCI, and NIAID.
Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population
Cruz Cisneros et al., Vaccines. 2024.
https://pubmed.ncbi.nlm.nih.gov/38276675/
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. Although host genetic factors are known to affect vaccine efficacy for such respiratory pathogens as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. Investigators used the diversity outbred mouse model to study the effects of genetic variation on vaccine efficiency. Data indicate that variations in vaccine response in mice are heritable, similar to that in human populations. Supported by ORIP (U42OD010924), NIAID, and NIGMS.
Interferon Regulatory Factor 7 Modulates Virus Clearance and Immune Responses to Alphavirus Encephalomyelitis
Troisi et al., Journal of Virology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37772825/
Interferon regulatory factor 7 (IRF7)–deficient mice develop fatal paralysis after CNS infection with Sindbis virus, while wild-type mice recover. Irf7-/- mice produce low levels of IFN-α but high levels of IFN-β with induction of IFN-stimulated genes, so the reason for this difference is not understood. The current study shows that Irf7-/- mice developed inflammation earlier but failed to clear virus from motor neuron–rich regions of the brainstem and spinal cord. Therefore, IRF7 is either necessary for the neuronal response to currently identified mediators of clearance or enables the production of additional antiviral factor(s) needed for clearance. Supported by ORIP (T32OD011089, R01OD01026529) NINDS, and NIAID.