Selected Grantee Publications
- Clear All
- 23 results found
- Rodent Models
- nia
- nida
Senescent-like Microglia Limit Remyelination Through the Senescence Associated Secretory Phenotype
Gross et al., Nature Communications. 2025.
https://www.nature.com/articles/s41467-025-57632-w
Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disease in which immune cells infiltrate the central nervous system and promote deterioration of myelin and neurodegeneration. The capacity to regenerate myelin in the central nervous system diminishes with age. In this study, researchers used 2- to 3-month-old (young), 12-month-old (middle-aged), and 18- to 22-month-old (aged) C57BL/6 male and female mice. Results showed an upregulation of the senescence marker P16ink4a (P16) in microglial and macrophage cells within demyelinated lesions. Notably, treatment of senescent cells using genetic and pharmacological senolytic methods leads to enhanced remyelination in young and middle-aged mice but fails to improve remyelination in aged mice. These results suggest that therapeutic targeting of senescence-associated secretory phenotype components may improve remyelination in aging and MS. Supported by ORIP (R24OD036199), NIA, NINDS, and NIMH.
Suppressing APOE4-Induced Neural Pathologies by Targeting the VHL-HIF Axis
Jiang et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39874294
The ε4 variant of human apolipoprotein E (APOE4) is a major genetic risk factor for Alzheimer’s disease and increases mortality and neurodegeneration. Using Caenorhabditis elegans and male APOE-expressing mice, researchers determined that the Von Hippel-Lindau 1 (VHL-1) protein is a key modulator of APOE4-induced neural pathologies. This study demonstrated protective effects of the VHL-1 protein; the loss of this protein reduced APOE4-associated neuronal and behavioral damage by stabilizing hypoxia-inducible factor 1 (HIF-1), a transcription factor that protects against cellular stress and injury. Genetic VHL-1 inhibition also mitigated cerebral vascular injury and synaptic damage in APOE4-expressing mice. These findings suggest that targeting the VHL–HIF axis in nonproliferative tissues could reduce APOE4-driven mortality and neurodegeneration. Supported by ORIP (R24OD010943, R21OD032463, P40OD010440), NHGRI, NIA, and NIGMS.
A Murine Model of Trypanosoma brucei-Induced Myocarditis and Cardiac Dysfunction
Crilly et al., Microbiology Spectrum. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11792545
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases, HAT and AAT, respectively. Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models for T. brucei infection. A clinically relevant, reproducible murine model for T. brucei–associated cardiomyopathy is currently unavailable. The researchers developed a 7- to 10-week-old C57Bl/6J male and female mouse model for T. brucei infection that demonstrates myocarditis, elevated serum levels of NT-proBNP, and electrocardiographic abnormalities, recapitulating the clinical features of infection. The results demonstrate the importance of interstitial space in T. brucei colonization and provide a relevant, reproducible murine model to investigate the pathogenesis and potential therapeutics of T. brucei-mediated heart damage. Supported by ORIP (T32OD011089, S10OD026859), NCI, and NIA.
Peripherally Mediated Opioid Combination Therapy in Mouse and Pig
Peterson et al., The Journal of Pain. 2025.
https://pubmed.ncbi.nlm.nih.gov/39542192
This study evaluates novel opioid combinations for pain relief with reduced side effects. Researchers investigated loperamide (a μ-opioid agonist) with either oxymorphindole or N‑benzyl-oxymorphindole—both δ-opioid receptor partial agonists—in mice (male and female) and pigs (male). These combinations produced synergistic analgesia across species without causing adverse effects or respiratory depression. The therapies significantly reduced hypersensitivity in post-injury models, outperforming morphine alone. These findings suggest that peripherally acting opioid combinations can offer effective, safer alternatives for pain management, potentially lowering opioid misuse and side effects. This approach could improve clinical strategies for treating chronic and acute pain with limited central opioid exposure. Supported by ORIP (T32OD010993), NHLBI, and NIDA.
Functional Differences Between Rodent and Human PD-1 Linked to Evolutionary Divergence
Masubuchi et al., Science Immunology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39752535/
Programmed cell death protein 1 (PD-1), an immune checkpoint receptor, regulates immunity against cancer. Rodent models (e.g., mice) do not exhibit the same response rates and immune-related adverse effects to PD-1 blocking drugs as patients with cancer. Only 59.6% amino acid sequence identity is conserved in human PD-1 (hu PD-1) and mouse PD-1 (mo PD-1). Researchers used mouse tumor models, coculture assays, and biophysical assays to determine key functional and biochemical differences between hu PD-1 and mo PD-1. HuPD-1 demonstrates stronger suppressive activity of interleukin-2 secretion and CD69 expression than mo PD-1 because of the ectodomain and intracellular domain, but not the transmembrane domain. Analysis of rodent evolution demonstrated that other inhibitory immunoreceptors were positively selected or had selection intensification over PD-1. Understanding the conservation and divergence of PD-1 signaling at the molecular level in humans compared with mice is needed to properly translate preclinical data to clinical therapeutics. Supported by ORIP (S10OD026929), NCI, and NIA.
Transcriptomic Analysis of Skeletal Muscle Regeneration Across Mouse Lifespan Identifies Altered Stem Cell States
Walter et al., Nature Aging. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578558
Age-related skeletal muscle regeneration dysfunction is poorly understood. Using single-cell transcriptomics and high-resolution spatial transcriptomics, researchers evaluated factors contributing to age-related decline in skeletal muscle regeneration after injury in young, old, and geriatric male and female mice (5, 20, and 26 months old). Eight immune cell types were identified and associated with age-related dynamics and distinct muscle stem cell states specific to old and geriatric tissue. The findings emphasize the role of extrinsic and intrinsic factors, including cellular senescence, in disrupting muscle repair. This study provides a spatial and molecular framework for understanding regenerative decline and cellular heterogeneity in aging skeletal muscle. Supported by ORIP (F30OD032097), NIA, NIAID, NIAMS, NICHD, and NIDA.
Engineered Deletions of HIV Replicate Conditionally to Reduce Disease in Nonhuman Primates
Pitchai et al., Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39116226/
Current antiretroviral therapy (ART) for HIV is limited by the necessity for continuous administration. Discontinuation of ART leads to viral rebound. A therapeutic interfering particle (TIP) was developed as a novel single-administration HIV therapy using defective interfering particles. TIP treatment in two humanized mouse models demonstrated a significant reduction in HIV viral load. TIP intervention was completed 24 hours prior to a highly pathogenic simian immunodeficiency virus (SIV) challenge in a nonhuman primate (NHP) rhesus macaque infant model. Compared to untreated SIV infection, NHPs that received TIP treatment displayed no visible signs of SIV-induced AIDS and exhibited improved seroconversion and a significant survival advantage to the 30-week clinical endpoint. Peripheral blood mononuclear cells isolated from HIV-infected patients showed that TIP treatment reduced HIV outgrowth. This study demonstrates the potential use of a single-administration TIP for HIV treatment. Supported by ORIP (P51OD011092, U42OD010426), NCI, NIAID, and NIDA.
A Revamped Rat Reference Genome Improves the Discovery of Genetic Diversity in Laboratory Rats
de Jong, Cell Genomics. 2024.
https://www.cell.com/cell-genomics/fulltext/S2666-979X(24)00069-7
Rattus norvegicus has been used in many fields of study related to human disease; its genome was sequenced shortly after the genomes of Homo sapiens and Mus musculus. Investigators report extensive analyses of the improvements in mRatBN7.2, compared with the previous version. They conducted a broad analysis of a whole-genome sequencing data set of 163 samples from 120 inbred rat strains and substrains. Several additional resources have been created. This new assembly and its associated resources create a more solid platform for research on the many dimensions of physiology, behavior, and pathobiology of rats and can provide more reliable and meaningful translation of findings to human populations. Supported by ORIP (R24OD024617), NHGRI, NHLBI, and NIDA.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Molecular Basis of Human Trace Amine-Associated Receptor 1 Activation
Zilberg et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-023-44601-4
The authors reported the cryogenic electron microscopy structure of human trace amine-associated receptor 1 (hTAAR1, hTA1) signaling complex, a key modulator in monoaminergic neurotransmission, as well as its similarities and differences with other TAAR members and rodent TA1 receptors. This discovery has elucidated hTA1’s molecular mechanisms underlining the strongly divergent pharmacological properties of human and rodent TA1 and therefore will boost the translation of preclinical studies to clinical applications in treating disorders of dopaminergic dysfunction, metabolic disorders, cognitive impairment, and sleep-related dysfunction. Supported by ORIP (S10OD019994, S10OD026880, and S10OD030463), NIDA, NIGMS, NIMH, and NCATS.