Selected Grantee Publications
- Clear All
- 5 results found
- Rodent Models
- nhlbi
- Microscopy
The Splicing Factor hnRNPL Demonstrates Conserved Myocardial Regulation Across Species and Is Altered in Heart Failure
Draper et al., FEBS Letters. 2024.
https://pubmed.ncbi.nlm.nih.gov/39300280/
The 5-year mortality rate of heart failure (HF) is approximately 50%. Gene splicing, induced by splice factors, is a post-transcriptional modification of mRNA that may regulate pathological remodeling in HF. Researchers investigated the role of the splice factor heterogenous nuclear ribonucleoprotein-L (hnRNPL) in cardiomyopathy. hnRNPL protein expression is significantly increased in a male C57BL/6 transaortic constriction–induced HF mouse model and in clinical samples derived from canine or human HF patients. Cardiac-restricted knockdown of the hnRNPL homolog in Drosophila revealed systolic dysfunction and reduced life span. This study demonstrates a conserved cross-species role of hnRNPL in regulating heart function. Supported by ORIP (K01OD028205) and NHLBI.
Amphiphilic Shuttle Peptide Delivers Base Editor Ribonucleoprotein to Correct the CFTR R553X Mutation in Well-Differentiated Airway Epithelial Cells
Kulhankova et al., Nucleic Acids Research. 2024.
https://academic.oup.com/nar/article/52/19/11911/7771564?login=true
Effective translational delivery strategies for base editing applications in pulmonary diseases remain a challenge because of epithelial cells lining the intrapulmonary airways. The researchers demonstrated that the endosomal leakage domain (ELD) plays a crucial role in gene editing ribonucleoprotein (RNP) delivery activity. A novel shuttle peptide, S237, was created by flanking the ELD with poly glycine-serine stretches. Primary airway epithelia with the cystic fibrosis transmembrane conductance regulator (CFTR) R533X mutation demonstrated restored CFTR function when treated with S237-dependent ABE8e-Cas9-NG RNP. S237 outperformed the S10 shuttle peptide at Cas9 RNP delivery in vitro and in vivo using primary human bronchial epithelial cells and transgenic green fluorescent protein neonatal pigs. This study highlights the efficacy of S237 peptide–mediated RNP delivery and its potential as a therapeutic tool for the treatment of cystic fibrosis. Supported by ORIP (U42OD027090, U42OD026635), NCATS, NHGRI, NHLBI, NIAID, NIDDK, and NIGMS.
Loss of Lymphatic IKKα Disrupts Lung Immune Homeostasis, Drives BALT Formation, and Protects Against Influenza
Cully et al., Immunohorizons. 2024.
https://pubmed.ncbi.nlm.nih.gov/39007717/
Tertiary lymphoid structures (TLS) have context-specific roles, and more work is needed to understand how they function in separate diseases to drive or reduce pathology. Researchers showed previously that lymph node formation is ablated in mice constitutively lacking IκB kinase alpha (IKKα) in lymphatic endothelial cells (LECs). In this study, they demonstrated that loss of IKKα in lymphatic endothelial cells leads to the formation of bronchus-associated lymphoid tissue in the lung. Additionally, they showed that male and female mice challenged with influenza A virus (IAV) exhibited markedly improved survival rates and reduced weight loss, compared with littermate controls. They concluded that ablating IKKα in this tissue reduces the susceptibility of the mice to IAV infection through a decrease in proinflammatory stimuli. This work provides a new model to explore the mechanisms of TLS formation and the immunoregulatory function of lung lymphatics. Supported by ORIP (T35OD010919), NHLBI, NIAID, and NIAMS.
Obesity Causes Mitochondrial Fragmentation and Dysfunction in White Adipocytes Due to RalA Activation
Xia et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38286821/
This study presents a molecular mechanism for mitochondrial dysfunction as a characteristic trait of obesity. Chronic activation of the small GTPase RalA in inguinal white adipocytes (iWAT), in male mice fed a high-fat diet (HFD) represses energy expenditure by shifting mitochondrial dynamics toward excessive fission, contributing to weight gain and metabolic dysfunction. Targeted deletion of RalA in iWAT attenuated HFD-induced obesity due to increased energy expenditure and mitochondrial oxidative phosphorylation. Mechanistically, RalA dephosphorylates inhibitory Serine637 on fission protein Drp1, leading to excessive fission in adipocytes and mitochondrial fragmentation. Expression of a human homolog of Drp1—DNM1L—in adipose tissue is positively correlated with obesity and insulin resistance. These findings open avenues to investigate RalA-Drp1 axis in energy homeostasis. Supported by ORIP (S10OD023527), NCI, NHLBI, and NIDDK.